Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Chem Soc Rev ; 53(1): 263-316, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38059728

ABSTRACT

The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.

2.
Chemphyschem ; 24(20): e202300470, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37477880

ABSTRACT

Assemblies of photoredox catalysts and their target substrates prior to photoexcitation is a phenomenon naïvely overlooked by the majority of synthetic chemists, but can have profound influences on reactivity and selectivity in photocatalytic reactions. In this study, we determine the aggregation states of triarylamine radical cationic photocatalysts with various target arene substrates in different solvents by specifically parameterized polarizable molecular dynamics simulations. A π-stacking interaction previously implicated by more expensive, less-representative quantum calculations is confirmed. Critically, this study presents new insights on: i) the ability of solvents (MeCN vs DMF) to make or break a photocatalytic reaction by promoting (MeCN) or demoting (DMF) its catalyst-substrate assemblies, which is a determining factor for reactivity, ii) the average "lifetimes" of assemblies in solution from a dynamic simulation. We find that both in the ground state and the photoexcited state, the cationic radical assemblies remain intact for periods often higher than 60 ps, rendering them ideally suitable to undergo intra-assembly electron transfer reactions upon photoexcitation. Such aspects have not addressed by previous studies on synthetic photocatalytic reactions involving non-covalent assemblies.

3.
J Chem Phys ; 158(14): 144201, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061463

ABSTRACT

We present a hollow-core fiber (HCF) based transient absorption experiment, with capabilities beyond common titanium:sapphire based setups. By spectral filtering of the HCF spectrum, we provide pump pulses centered at 425 nm with several hundred nJ of pulse energy at the sample position. By employing the red edge of the HCF output for seeding CaF2, we obtain smooth probing spectra in the range between 320 and 900 nm. We demonstrate the capabilities of our experiment by following the ultrafast relaxation dynamics of a radical cationic photocatalyst to prove its pre-association with an arene substrate, a phenomenon that was not detectable previously by steady-state spectroscopic techniques. The detected preassembly rationalizes the successful participation of radical ionic photocatalysts in single electron transfer reactions, a notion that has been subject to controversy in recent years.

4.
Angew Chem Int Ed Engl ; 62(44): e202307550, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37584300

ABSTRACT

Electron-deficient acridones and in situ generated acridinium salts are reported as potent, closed-shell photooxidants that undergo surprising mechanisms. When bridging acyclic triarylamine catalysts with a carbonyl group (acridones), this completely diverts their behavior away from open-shell, radical cationic, 'beyond diffusion' photocatalysis to closed-shell, neutral, diffusion-controlled photocatalysis. Brønsted acid activation of acridones dramatically increases excited state oxidation power (by +0.8 V). Upon reduction of protonated acridones, they transform to electron-deficient acridinium salts as even more potent photooxidants (*E1/2 =+2.56-3.05 V vs SCE). These oxidize even electron-deficient arenes where conventional acridinium salt photooxidants have thusfar been limited to electron-rich arenes. Surprisingly, upon photoexcitation these electron-deficient acridinium salts appear to undergo two electron reductive quenching to form acridinide anions, spectroscopically-detected as their protonated forms. This new behaviour is partly enabled by a catalyst preassembly with the arene, and contrasts to conventional SET reductive quenching of acridinium salts. Critically, this study illustrates how redox active chromophoric molecules initially considered photocatalysts can transform during the reaction to catalytically active species with completely different redox and spectroscopic properties.

5.
Beilstein J Org Chem ; 19: 1055-1145, 2023.
Article in English | MEDLINE | ID: mdl-37533877

ABSTRACT

Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.

6.
Angew Chem Int Ed Engl ; 61(12): e202107811, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-34478188

ABSTRACT

Synthetic photoelectrochemistry (PEC) is receiving increasing attention as a new frontier for the generation and handling of reactive intermediates. PEC permits selective single-electron transfer (SET) reactions in a much greener way and broadens the redox window of possible transformations. Herein, the most recent contributions are reviewed, demonstrating exciting new opportunities, namely, the combination of PEC with other reactivity paradigms (hydrogen-atom transfer, radical polar crossover, energy transfer sensitization), scalability up to multigram scale, novel selectivities in SET super-oxidations/reductions and the importance of precomplexation to temporally enable excited radical ion catalysis.

7.
Angew Chem Int Ed Engl ; 60(38): 20817-20825, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34165861

ABSTRACT

We report a novel example of electro-mediated photoredox catalysis (e-PRC) in the reductive cleavage of C(sp3 )-O bonds of phosphinated alcohols to alkyl carbanions. As well as deoxygenations, olefinations are reported which are E-selective and can be made Z-selective in a tandem reduction/photosensitization process where both steps are photoelectrochemically promoted. Spectroscopy, computation, and catalyst structural variations reveal that our new naphthalene monoimide-type catalyst allows for an intimate dispersive precomplexation of its radical anion form with the phosphinate substrate, facilitating a reactivity-determining C(sp3 )-O cleavage. Surprisingly and in contrast to previously reported photoexcited radical anion chemistries, our conditions tolerate aryl chlorides/bromides and do not give rise to Birch-type reductions.

8.
Org Biomol Chem ; 18(39): 7697-7723, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32785363

ABSTRACT

C-Alkylations of alkali metal carbanions with olefins, first reported five decades ago, is a class of reaction undergoing a resurgence in organic synthesis in recent years. As opposed to expectations from classical chemistry and transition metal-catalysis, here olefins behave as closed-shell electrophiles. Reactions range from highly reactive alkyllithiums giving rise to anionic polymerization, to moderately reactive alkylpotassium or alkylsodium compounds that give rise to defined, controlled and bimolecular chemistry. This review presents a brief historical overview on C-alkylation of alkali metal carbanions with olefins (typically mediated by KOtBu and KHMDS), highlights contemporary applications and features developing mechanistic understanding, thereby serving as a platform for future studies and the widespread use of this class of reaction in organic synthesis.

9.
Org Biomol Chem ; 18(11): 2063-2075, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32100777

ABSTRACT

Base-catalyzed, C-alkylation of potassium (K) enolates with styrenes (CAKES) has recently emerged as a highly practical and convenient method for elaboration or synthesis of pharmaceutically-relevant cores. K enolate-type precursors such as alkyl-substituted heterocycles (pyridines, pyrazines and thiophenes), ketones, imines, nitriles and amides undergo C-alkylation reactions with styrene in the presence of KOtBu or KHMDS. Surprisingly, no studies have probed the reaction mechanism beyond the likely initial formation of a K enolate. Herein, a synergistic approach of computational (DFT), kinetic and deuterium labelling studies rationalizes various experimental observations and supports a metal-ene-type reaction for amide CAKES. Moreover, our approach explains experimental observations in other reported C-alkylation reactions of other enolate-type precursors, thus implicating a general mechanism for CAKES.

10.
Org Biomol Chem ; 18(13): 2538, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32186572

ABSTRACT

Correction for 'Base-catalyzed C-alkylation of potassium enolates with styrenes via a metal-ene reaction: a mechanistic study' by Joshua P. Barham et al., Org. Biomol. Chem., 2020, DOI: 10.1039/c9ob02495f.

11.
Angew Chem Int Ed Engl ; 59(29): 11732-11747, 2020 07 13.
Article in English | MEDLINE | ID: mdl-31805216

ABSTRACT

Photoredox catalysis (PRC) and synthetic organic electrochemistry (SOE) are often considered competing technologies in organic synthesis. Their fusion has been largely overlooked. We review state-of-the-art synthetic organic photoelectrochemistry, grouping examples into three categories: 1) electrochemically mediated photoredox catalysis (e-PRC), 2) decoupled photoelectrochemistry (dPEC), and 3) interfacial photoelectrochemistry (iPEC). Such synergies prove beneficial not only for synthetic "greenness" and chemical selectivity, but also in the accumulation of energy for accessing super-oxidizing or -reducing single electron transfer (SET) agents. Opportunities and challenges in this emerging and exciting field are discussed.

12.
Beilstein J Org Chem ; 16: 2151-2192, 2020.
Article in English | MEDLINE | ID: mdl-32952732

ABSTRACT

The importance of fluorinated products in pharmaceutical and medicinal chemistry has necessitated the development of synthetic fluorination methods, of which direct C-H fluorination is among the most powerful. Despite the challenges and limitations associated with the direct fluorination of unactivated C-H bonds, appreciable advancements in manipulating the selectivity and reactivity have been made, especially via transition metal catalysis and photochemistry. Where transition metal catalysis provides one strategy for C-H bond activation, transition-metal-free photochemical C-H fluorination can provide a complementary selectivity via a radical mechanism that proceeds under milder conditions than thermal radical activation methods. One exciting development in C-F bond formation is the use of small-molecule photosensitizers, allowing the reactions i) to proceed under mild conditions, ii) to be user-friendly, iii) to be cost-effective and iv) to be more amenable to scalability than typical photoredox-catalyzed methods. In this review, we highlight photosensitized C-H fluorination as a recent strategy for the direct and remote activation of C-H (especially C(sp3)-H) bonds. To guide the readers, we present the developing mechanistic understandings of these reactions and exemplify concepts to assist the future planning of reactions.

13.
Chem Rec ; 19(1): 188-203, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30457695

ABSTRACT

Microwave heating in chemical reactions was first reported in 1986. There have since been many reports employing microwave heating in organic chemistry, where microwave heating has afforded higher yields of products in shorter time periods. However, such reactions are challenging to scale in batch due to the limited penetration depth of microwaves as well as the wave propagation dependence on cavity size. Continuous flow has addressed both these issues, enabling scalability of microwave processes. As such, a host of reports employing microwave flow chemistry have emerged, employing various microwave heating and reactor configurations in the context of either custom-built or commercial apparatus. The focus of this review is to present the benefits of microwave heating in the context of continuous flow and to characterize the different types of microwave flow apparatus by their design (oscillator, cavity type and reactor vessel). We advocate the adoption of tunable, solid-state oscillator single-mode microwave flow reactors which are more versatile heaters, impart better process control and energy efficiency toward laboratory and larger-scale synthetic chemistry applications.

14.
J Am Chem Soc ; 140(36): 11510-11518, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30119605

ABSTRACT

Potassium hydride behaves uniquely and differently than sodium hydride toward aryl halides. Its reactions with a range of haloarenes, including designed 2,6-dialkylhaloarenes, were studied in THF and in benzene. In THF, evidence supports concerted nucleophilic aromatic substitution, CSNAr, and the mechanism originally proposed by Pierre et al. is now validated through DFT studies. In benzene, besides this pathway, strong evidence for single electron transfer chemistry is reported. Experimental observations and DFT studies lead us to propose organic super electron donor generation to initiate BHAS (base-promoted homolytic aromatic substitution) cycles. Organic donor formation originates from deprotonation of benzene by KH; attack on benzene by the resulting phenylpotassium generates phenylcyclohexadienylpotassium that can undergo (i) deprotonation to form an organic super electron donor or (ii) hydride loss to afford biphenyl. Until now, BHAS reactions have been triggered by reaction of a base, MO tBu (M = K, Na), with many different types of organic additive, all containing heteroatoms (N or O or S) that enhance their acidity and place them within range of MO tBu as a base. This paper shows that with the stronger base, KH, even a hydrocarbon (benzene) can be converted into an electron-donating initiator.

15.
J Org Chem ; 83(8): 4348-4354, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29642704

ABSTRACT

The synergy of continuous processing and microwave heating technologies has unlocked scalable (g/h), safe and efficient reaction conditions for synthesis of fullerene/indene-based organic photovoltaic acceptor materials in a nonchlorinated solvent with levels of productivity unparalleled by previous syntheses. The microwave flow reactor sustains high temperature while employing short residence times, reaction conditions which uniquely allow the selective synthesis of fullerene/indene monoadducts. Design of experiments analysis revealed residence time as the most crucial factor for conversion and selectivity control.

16.
Org Biomol Chem ; 16(41): 7568-7573, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30298895

ABSTRACT

C-Alkylation of N-alkylamides with styrenes is reported, proceeding in ambient air/moisture to give arylbutanamides and pharmaceutically-relevant scaffolds in excellent mass balance. Various amide and styrene derivatives were tolerated, rapidly affording molecular complexity in a single step; thus highlighting the future utility of this transformation in the synthetic chemistry toolbox. Reaction scalability (up to 65 g h-1 product) was demonstrated using a Microwave Flow reactor, as the first example of a C-alkylation reaction using styrenes in continuous flow.

17.
J Am Chem Soc ; 138(47): 15482-15487, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27809514

ABSTRACT

We report a simple one-pot protocol that affords functionalization of N-CH3 groups in N-methyl-N,N-dialkylamines with high selectivity over N-CH2R or N-CHR2 groups. The radical cation DABCO+•, prepared in situ by oxidation of DABCO with a triarylaminium salt, effects highly selective and contra-thermodynamic C-H abstraction from N-CH3 groups. The intermediates that result react in situ with organometallic nucleophiles in a single pot, affording novel and highly selective homologation of N-CH3 groups. Chemoselectivity, scalability, and recyclability of reagents are demonstrated, and a mechanistic proposal is corroborated by computational and experimental results. The utility of the transformation is demonstrated in the late-stage site-selective functionalization of natural products and pharmaceuticals, allowing rapid derivatization for investigation of structure-activity relationships.

18.
J Am Chem Soc ; 138(23): 7402-10, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27183183

ABSTRACT

Many recent studies have used KOtBu in organic reactions that involve single electron transfer; in the literature, the electron transfer is proposed to occur either directly from the metal alkoxide or indirectly, following reaction of the alkoxide with a solvent or additive. These reaction classes include coupling reactions of halobenzenes and arenes, reductive cleavages of dithianes, and SRN1 reactions. Direct electron transfer would imply that alkali metal alkoxides are willing partners in these electron transfer reactions, but the literature reports provide little or no experimental evidence for this. This paper examines each of these classes of reaction in turn, and contests the roles proposed for KOtBu; instead, it provides new mechanistic information that in each case supports the in situ formation of organic electron donors. We go on to show that direct electron transfer from KOtBu can however occur in appropriate cases, where the electron acceptor has a reduction potential near the oxidation potential of KOtBu, and the example that we use is CBr4. In this case, computational results support electrochemical data in backing a direct electron transfer reaction.

19.
Angew Chem Int Ed Engl ; 55(14): 4492-6, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26938924

ABSTRACT

Transition metal-free couplings of haloarenes with arenes, triggered by the use of alkali metal alkoxides in the presence of an organic additive, are receiving significant attention in the literature. Most of the known organic additives effect coupling of iodoarenes, but not bromoarenes, to arenes. Recently it was reported that 2-pyridinecarbinol (11) extends the reaction to aryl bromides. This paper investigates the mechanism, and reports evidence for dianions derived from 11 as electron donors to initiate the reaction. It also proposes routes by which electron-poor benzoyl derivatives can be transformed into electron donors to initiate these reactions.

20.
Beilstein J Org Chem ; 10: 2981-8, 2014.
Article in English | MEDLINE | ID: mdl-25550765

ABSTRACT

Nucleophilic trapping of iminium salts generated via oxidative functionalisation of tertiary amines is well established with stabilised carbon nucleophiles. The few reports of organometallic additions have limited scope of substrate and organometallic nucleophile. We report a novel, one-pot methodology that functionalises N-substituted tetrahydroisoquinolines by visible light-assisted photooxidation, followed by trapping of the resultant iminium ions with organometallic nucleophiles. This affords 1,2-disubstituted tetrahydroisoquinolines in moderate to excellent yields.

SELECTION OF CITATIONS
SEARCH DETAIL