Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Phys Chem A ; 112(34): 7848-55, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18672867

ABSTRACT

The mechanism of 2,2'6,6'-tetramethylpiperidin- N-oxyl (TEMPO)-mediated oxidation of alcohols to aldehydes and ketones in ionic liquids has been investigated using cyclic voltammetry and rotating disk electrode voltammetry. It is shown that the presence of bases (B) and their conjugate acids (BH (+)), as well as their p K as, strongly influences the rate of reaction. Data indicated that the first step in the oxidation is the formation of the alcoholate species via acid-base equlibrium with B. The alcoholate subsequently reacts with the active form of TEMPO (T (+), i.e., the one-electron oxidized form) forming an intermediate that further reacts with T (+) and B returning TEMPO catalytically, BH (+), and the carbonyl product. A kinetic model incorporating this pre-equilibrium step has been derived, which accounts for the experimentally observed reaction kinetics. Overall, the rate of reaction is controlled by the equilibrium constant for the pre-equilibrium step; as such, strong bases are required for more kinetically efficient transformations using this redox catalyst.

2.
Chem Commun (Camb) ; (12): 1434-5, 2003 Jun 21.
Article in English | MEDLINE | ID: mdl-12841278

ABSTRACT

Direct or Ni-catalysed electroreductive homocouplings of organic halides and couplings of organic halides with activated olefins are efficiently conducted by constant current electrolyses in an undivided cell in room-temperature ionic liquids as the solvent-electrolyte media.

3.
J Phys Chem B ; 116(1): 277-82, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22050284

ABSTRACT

Two electrochemical techniques have been used to measure the pK(a) of N-bases in several ionic liquids (ILs). The first method corresponds to a potentiometric titration of a strong acid with the N-base using a platinized Pt indicator electrode immersed in the IL solution and maintained under dihydrogen atmosphere via gas bubbling. The second approach involves performing cyclic voltammetry at a platinized Pt electrode in a solution containing both strong acid and the conjugate weak acid of the N-base. Values of pK(a) obtained by one or the other approach are in good agreement with each other. The experimental data clearly demonstrated that acid/base chemistry in ILs is similar to that observed in molecular nonaqueous solvents; i.e., the relative strengths of the bases were in the right order and spaced (ΔpK(a)). It was also observed that the strength of N-bases is highly dependent on the anion of the ionic liquid; this observation indicates that pH-dependent reactions could be controlled by the appropriate choice of anion for bulk ILs or as an added co-ion to bulk IL.

SELECTION OF CITATIONS
SEARCH DETAIL