Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mutat ; 42(11): 1488-1502, 2021 11.
Article in English | MEDLINE | ID: mdl-34420246

ABSTRACT

Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.


Subject(s)
Breast Neoplasms/genetics , Exons , Genes, BRCA1 , Genetic Carrier Screening , Genetic Predisposition to Disease , RNA Splicing , Female , Humans , Introns
2.
Breast Cancer Res ; 23(1): 79, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344426

ABSTRACT

BACKGROUND: Diagnostic ionizing radiation is a risk factor for breast cancer (BC). BC risk increases with increased dose to the chest and decreases with increased age at exposure, with possible effect modification related to familial or genetic predisposition. While chest X-rays increase the BC risk of BRCA1/2 mutation carriers compared to non-carriers, little is known for women with a hereditary predisposition to BC but who tested negative for a BRCA1 or BRCA2 (BRCA1/2) mutation. METHODS: We evaluated the effect of chest X-rays from diagnostic medical procedures in a dataset composed of 1552 BC cases identified through French family cancer clinics and 1363 unrelated controls. Participants reported their history of X-ray exposures in a detailed questionnaire and were tested for 113 DNA repair genes. Logistic regression and multinomial logistic regression models were used to assess the association with BC. RESULTS: Chest X-ray exposure doubled BC risk. A 3% increased BC risk per additional exposure was observed. Being 20 years old or younger at first exposure or being exposed before first full-term pregnancy did not seem to modify this risk. Birth after 1960 or carrying a rare likely deleterious coding variant in a DNA repair gene other than BRCA1/2 modified the effect of chest X-ray exposure. CONCLUSION: Ever/never chest X-ray exposure increases BC risk 2-fold regardless of age at first exposure and, by up to 5-fold when carrying 3 or more rare variants in a DNA repair gene. Further studies are needed to evaluate other DNA repair genes or variants to identify those which could modify radiation sensitivity. Identification of subpopulations that are more or less susceptible to ionizing radiation is important and potentially clinically relevant.


Subject(s)
Breast Neoplasms/etiology , Genetic Predisposition to Disease/genetics , Radiography/adverse effects , Adult , Breast Neoplasms/genetics , DNA Repair/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Humans , Middle Aged , Mutation , Radiography/statistics & numerical data , Risk , Risk Factors , Young Adult
3.
Int J Cancer ; 148(8): 1895-1909, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33368296

ABSTRACT

Single-nucleotide polymorphisms (SNPs) in over 180 loci have been associated with breast cancer (BC) through genome-wide association studies involving mostly unselected population-based case-control series. Some of them modify BC risk of women carrying a BRCA1 or BRCA2 (BRCA1/2) mutation and may also explain BC risk variability in BC-prone families with no BRCA1/2 mutation. Here, we assessed the contribution of SNPs of the iCOGS array in GENESIS consisting of BC cases with no BRCA1/2 mutation and a sister with BC, and population controls. Genotyping data were available for 1281 index cases, 731 sisters with BC, 457 unaffected sisters and 1272 controls. In addition to the standard SNP-level analysis using index cases and controls, we performed pedigree-based association tests to capture transmission information in the sibships. We also performed gene- and pathway-level analyses to maximize the power to detect associations with lower-frequency SNPs or those with modest effect sizes. While SNP-level analyses identified 18 loci, gene-level analyses identified 112 genes. Furthermore, 31 Kyoto Encyclopedia of Genes and Genomes and 7 Atlas of Cancer Signaling Network pathways were highlighted (false discovery rate of 5%). Using results from the "index case-control" analysis, we built pathway-derived polygenic risk scores (PRS) and assessed their performance in the population-based CECILE study and in a data set composed of GENESIS-affected sisters and CECILE controls. Although these PRS had poor predictive value in the general population, they performed better than a PRS built using our SNP-level findings, and we found that the joint effect of family history and PRS needs to be considered in risk prediction models.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Mutation , Polymorphism, Single Nucleotide , Signal Transduction/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Case-Control Studies , Female , Gene Regulatory Networks/genetics , Genetic Testing/methods , Genome-Wide Association Study/methods , Humans , Protein Interaction Maps/genetics , ROC Curve , Siblings
4.
Int J Cancer ; 144(8): 1962-1974, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30303537

ABSTRACT

Pathogenic variants in BRCA1 and BRCA2 only explain the underlying genetic cause of about 10% of hereditary breast and ovarian cancer families. Because of cost-effectiveness, multigene panel testing is often performed even if the clinical utility of testing most of the genes remains questionable. The purpose of our study was to assess the contribution of rare, deleterious-predicted variants in DNA repair genes in familial breast cancer (BC) in a well-characterized and homogeneous population. We analyzed 113 DNA repair genes selected from either an exome sequencing or a candidate gene approach in the GENESIS study, which includes familial BC cases with no BRCA1 or BRCA2 mutation and having a sister with BC (N = 1,207), and general population controls (N = 1,199). Sequencing data were filtered for rare loss-of-function variants (LoF) and likely deleterious missense variants (MV). We confirmed associations between LoF and MV in PALB2, ATM and CHEK2 and BC occurrence. We also identified for the first time associations between FANCI, MAST1, POLH and RTEL1 and BC susceptibility. Unlike other associated genes, carriers of an ATM LoF had a significantly higher risk of developing BC than carriers of an ATM MV (ORLoF = 17.4 vs. ORMV = 1.6; p Het = 0.002). Hence, our approach allowed us to specify BC relative risks associated with deleterious-predicted variants in PALB2, ATM and CHEK2 and to add MAST1, POLH, RTEL1 and FANCI to the list of DNA repair genes possibly involved in BC susceptibility. We also highlight that different types of variants within the same gene can lead to different risk estimates.


Subject(s)
Breast Neoplasms/genetics , DNA Repair/genetics , Genetic Predisposition to Disease , Genetic Testing/methods , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Case-Control Studies , Female , Humans , Middle Aged , Risk Assessment/methods , Siblings
5.
Breast Cancer Res Treat ; 161(1): 117-134, 2017 01.
Article in English | MEDLINE | ID: mdl-27796716

ABSTRACT

PURPOSE: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10-6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance. CONCLUSION: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.


Subject(s)
Alleles , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Genes, BRCA1 , Genes, BRCA2 , Heterozygote , Mutation , Biomarkers, Tumor , Chromosomes, Human, Pair 11 , Female , Gene Expression , Genetic Predisposition to Disease , Genetic Variation , Humans , Quantitative Trait Loci , Risk
6.
BMC Cancer ; 16: 13, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26758370

ABSTRACT

BACKGROUND: Less than 20% of familial breast cancer patients who undergo genetic testing for BRCA1 and BRCA2 carry a pathogenic mutation in one of these two genes. The GENESIS (GENE SISter) study was designed to identify new breast cancer susceptibility genes in women attending cancer genetics clinics and with no BRCA1/2 mutation. METHODS: The study involved the French national network of family cancer clinics. It was based on enrichment in genetic factors of the recruited population through case selection relying on familial criteria, but also on the consideration of environmental factors and endophenotypes like mammary density or tumor characteristics to assess potential genetic heterogeneity. One of the initial aims of GENESIS was to recruit affected sibpairs. Siblings were eligible when index cases and at least one affected sister were diagnosed with infiltrating mammary or ductal adenocarcinoma, with no BRCA1/2 mutation. In addition, unrelated controls and unaffected sisters were recruited. The enrolment of patients, their relatives and their controls, the collection of the clinical, epidemiological, familial and biological data were centralized by a coordinating center. RESULTS: Inclusion of participants started in February 2007 and ended in December 2013. A total of 1721 index cases, 826 affected sisters, 599 unaffected sisters and 1419 controls were included. 98% of participants completed the epidemiological questionnaire, 97% provided a blood sample, and 76% were able to provide mammograms. Index cases were on average 59 years old at inclusion, were born in 1950, and were 49.7 years of age at breast cancer diagnosis. The mean age at diagnosis of affected sisters was slightly higher (51.4 years). The representativeness of the control group was verified. CONCLUSIONS: The size of the study, the availability of biological specimens and the clinical data collection together with the detailed and complete epidemiological questionnaire make this a unique national resource for investigation of the missing heritability of breast cancer, by taking into account environmental and life style factors and stratifying data on endophenotypes to decrease genetic heterogeneity.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Germ-Line Mutation , Neoplasm Proteins/genetics , Adult , Aged , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Female , France/epidemiology , Genetic Predisposition to Disease , Genetic Testing , Humans , Middle Aged
7.
Nucleic Acids Res ; 42(14): 9121-30, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25034697

ABSTRACT

Large tandem repeat sequences have been poorly investigated as severe technical limitations and their frequent absence from the genome reference hinder their analysis. Extensive allelotyping of this class of variation has not been possible until now and their mutational dynamics are still poorly known. In order to estimate the mutation rate of a macrosatellite, we analysed in detail the RNU2 locus, which displays at least 50 different alleles containing 5-82 copies of a 6.1 kb repeat unit. Mining data from the 1000 Genomes Project allowed us to precisely estimate copy numbers of the RNU2 repeat unit using read depth of coverage. This further revealed significantly different mean values in various recent modern human populations, favoring a scenario of fast evolution of this locus. Its proximity to a disease gene with numerous founder mutations, BRCA1, within the same linkage disequilibrium block, offered the unique opportunity to trace RNU2 arrays over a large timescale. Analysis of the transmission of RNU2 arrays associated with one 'private' mutation in an extended kindred and four founder mutations in multiple kindreds gave an estimation by maximum likelihood of 5 × 10(-3) mutations per generation, which is close to that of microsatellites.


Subject(s)
DNA, Satellite/chemistry , Genes, BRCA1 , Mutation Rate , Cell Line , DNA Copy Number Variations , Humans , Mutation
8.
Breast Cancer Res Treat ; 154(3): 463-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26564480

ABSTRACT

Several population-based and family-based studies have demonstrated that germline mutations of the PALB2 gene (Partner and Localizer of BRCA2) are associated with an increased risk of breast cancer. Distinct mutation frequencies and spectrums have been described depending on the population studied. Here we describe the first complete PALB2 coding sequence screening in the French population. We screened the complete coding sequence and intron-exon boundaries of PALB2, using the EMMA technique, to assess the contribution of pathogenic mutations in a set of 835 familial breast cancer cases and 662 unrelated controls from the French national study GENESIS and the Paul Strauss Cancer Centre, all previously tested negative for BRCA1 and BRCA2 pathogenic mutations. Our analysis revealed the presence of four novel deleterious mutations: c.1186insT, c.1857delT and c.2850delC in three cases, c.3418dupT in one control. In addition, we identified two in-frame insertion/deletion, 19 missense substitutions (two of them predicted as pathogenic), 9 synonymous variants, 28 variants located in introns and 2 in UTRs, as well as frequent variants. Truncating PALB2 mutations were found in 0.36% of familial breast cancer cases, a frequency lower than the one detected in comparable studies in other populations (0.73-3.40%). This suggests a small but significant contribution of PALB2 mutations to the breast cancer susceptibility in the French population.


Subject(s)
Breast Neoplasms/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Breast Neoplasms, Male/genetics , Case-Control Studies , DNA Mutational Analysis , Exons , Fanconi Anemia Complementation Group N Protein , Female , France , Genetic Predisposition to Disease , Genetics, Population , Germ-Line Mutation , Humans , Male , Middle Aged , Mutation , Ovarian Neoplasms/genetics
9.
Hum Mol Genet ; 20(23): 4732-47, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21890493

ABSTRACT

Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77-0.95, P = 0.003). Promoter in vitro assays of the major BRCA1 haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of BRCA1 modify risk of breast cancer among carriers of BRCA1 mutations, possibly by altering the efficiency of BRCA1 transcription.


Subject(s)
Alleles , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Heterozygote , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Electrophoretic Mobility Shift Assay , Female , Genes, Reporter/genetics , Genetic Association Studies , Haplotypes/genetics , HeLa Cells , Humans , Linkage Disequilibrium/genetics , Luciferases/metabolism , Risk Factors
10.
Hum Mutat ; 32(9): 1004-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21591024

ABSTRACT

The rs2910164:G>C SNP is located in the gene for miR-146a, a microRNA that binds the 3' UTR of the BRCA1 transcript. Preliminary data based on the analysis of a small number of cases suggested that this single nucleotide polymorphism (SNP) might be associated with the age of onset of familial breast and ovarian cancer. This effect was not confirmed on a large series of familial breast cancer cases negative for a BRCA1 or BRCA2 mutation. We show here a lack of association of the rs2910164:G>C SNP with breast cancer risk in a series of 1,166 BRCA1 and 560 BRCA2 mutation carriers. In conclusion, the polymorphism in the miR-146a gene is unlikely to be of substantial significance regarding breast cancer risk.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , MicroRNAs/genetics , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Case-Control Studies , Female , Genetic Association Studies , Heterozygote , Humans , Risk Factors
11.
Am J Hum Genet ; 81(6): 1186-200, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17999359

ABSTRACT

RAD51 is an important component of double-stranded DNA-repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of RAD51, 135G-->C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G-->C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25-2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83-1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91-1.51) among heterozygotes and 3.18 (95% CI 1.39-7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G-->C variant affects RAD51 splicing within the 5' UTR. Thus, 135G-->C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Polymorphism, Single Nucleotide , Rad51 Recombinase/genetics , Adolescent , Adult , Alternative Splicing , BRCA1 Protein/genetics , Breast Neoplasms/prevention & control , DNA Primers , DNA Repair/genetics , Family , Female , Genetic Variation , Heterozygote , Homozygote , Humans , Middle Aged , Mutation , Reverse Transcriptase Polymerase Chain Reaction
12.
Nat Genet ; 49(5): 680-691, 2017 May.
Article in English | MEDLINE | ID: mdl-28346442

ABSTRACT

To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.


Subject(s)
Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Alleles , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carcinoma, Ovarian Epithelial , Female , Genome-Wide Association Study , Genotype , Humans , Meta-Analysis as Topic , Mutation , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide , Risk Factors , Telomere-Binding Proteins/genetics
13.
Nat Genet ; 49(12): 1767-1778, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29058716

ABSTRACT

Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Mutation , Polymorphism, Single Nucleotide , Breast Neoplasms/ethnology , Breast Neoplasms/metabolism , Female , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study/methods , Heterozygote , Humans , Receptors, Estrogen/metabolism , Risk Factors , White People/genetics
14.
Eur J Hum Genet ; 24(9): 1310-5, 2016 08.
Article in English | MEDLINE | ID: mdl-26980106

ABSTRACT

The abnormal expansion of a ≥36 CAG unit tract in the Huntingtin gene (HTT) leads to Huntington's disease (HD), but has also been associated with cancer: the incidence of cancer is lower in HD patients than in age-matched controls, but HD-causing variants of HTT accelerate the progression of breast tumors and the development of metastases in mouse models of breast cancer. To investigate the relationship between HTT CAGs and cancer, data concerning 2407 women with BRCA1 or BRCA2 mutations that predispose to breast and ovarian cancers and 431 patients with breast cancer without family histories were studied; the size of the CAG expansions on both HTT alleles was determined in each subject. The proportion of individuals carrying a CAG expansion in a pathological range for HD was 10 times more frequent than previously reported in the literature. In carriers of BRCA2 mutations, the length of the HTT CAG tract was correlated with lower incidence of ovarian cancer. Among carriers of BRCA1 mutations who developed a breast cancer, its onset occurred 2.4 years earlier in individuals with intermediate HTT alleles (≥27) than in those with a CAG tract <27. Finally, in patients with sporadic HER2 breast cancer, metastasis increased by a factor of 11.10 per 10 additional CAG repeats in HTT. We concluded that whereas long CAG length could be associated with lower cancer incidence, it could also be paradoxically associated with cancer severity (age of apparition and metastasis development).


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Huntingtin Protein/genetics , Trinucleotide Repeats/genetics , Adult , Alleles , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/classification , Breast Neoplasms/pathology , Female , Heterozygote , Humans , Middle Aged , Receptor, ErbB-2/genetics
15.
Eur J Hum Genet ; 24(9): 1324-9, 2016 08.
Article in English | MEDLINE | ID: mdl-26785832

ABSTRACT

Although a wide number of breast cancer susceptibility alleles associated with various levels of risk have been identified to date, about 50% of the heritability is still missing. Although the major BRCA1 and BRCA2 genes are being extensively screened for truncating and missense variants in breast and/or ovarian cancer families, potential regulatory variants affecting their expression remain largely unexplored. In an attempt to identify such variants, we focused our attention on gene regulation mediated by microRNAs (miRs). We screened two genes, MIR146A and MIR146B, producing miR-146a and miR-146b-5p, respectively, that regulate BRCA1, and the 3'- untranslated regions (3'-UTRs) of BRCA1 and BRCA2 in the GENESIS French national case/control study (BRCA1- and BRCA2-negative breast cancer cases with at least one sister with breast cancer and matched controls). We identified one rare variant in MIR146A, four in MIR146B, five in BRCA1 3'-UTR and one in BRCA2 3'-UTR in 716 index cases and 619 controls. Among these 11 rare variants, 7 were identified each in 1 index case. None of the three relevant MIR146A/MIR146B variants affected the pre-miR sequences. The potential causality of the four relevant BRCA1/BRCA2 3'-UTRs variants was evaluated with luciferase reporter assays and co-segregation studies, as well as with bioinformatics analyses to predict miRs-binding sites, RNA secondary structures and RNA accessibility. This is the first study to report the screening of miR genes and of BRCA2 3'-UTR in a large series of familial breast cancer cases. None of the variant identified in this study gave convincing evidence of potential pathogenicity.


Subject(s)
3' Untranslated Regions , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , MicroRNAs/genetics , Mutation , Adult , Aged , Case-Control Studies , Female , HeLa Cells , Humans , MCF-7 Cells , Middle Aged
16.
PLoS One ; 11(7): e0158801, 2016.
Article in English | MEDLINE | ID: mdl-27463617

ABSTRACT

Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.


Subject(s)
Chromosomes, Human, Pair 9 , Genes, BRCA1 , Genes, BRCA2 , Genetic Carrier Screening , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Chromosome Mapping , Female , Humans , Polymorphism, Single Nucleotide
17.
PLoS One ; 10(9): e0136192, 2015.
Article in English | MEDLINE | ID: mdl-26406445

ABSTRACT

Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively) have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms/genetics , Genome, Mitochondrial/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Mutation , Breast Neoplasms/diagnosis , Female , High-Throughput Nucleotide Sequencing , Humans , Penetrance
18.
Hum Mutat ; 20(6): 473-4, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12442273

ABSTRACT

Incidence of breast cancer in Indian women is not as high as in Western countries, nonetheless age-adjusted incidence rates (AAR) have risen from 17.9 to 24.9 per 100,000 from 1965 to 1985. Although these rates are still approximately one quarter to one third of incidence rates in North America and Europe, respectively, due to the large population of women at risk, nearly 80,000 new cases were diagnosed in India in 2000. Although identification of BRCA1 and BRCA2 has greatly increased our understanding of breast cancer genetics in populations of Western European descent, the role of these genes in Indian populations remains unexplored. Analysis of a series of 20 breast cancer patients from North India with either family history of breast and/or ovarian cancer (2 or more affected first degree relatives) or early age of onset (<35 years) led to identification of two novel splice variants (331+1G>T; 4476+2T>C) in BRCA1 (10%). In addition, two BRCA2 missense variants were each identified in more than one patient (two unrelated individuals each) and likely represent population-specific polymorphisms.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms, Male/genetics , Breast Neoplasms/genetics , Adult , DNA Mutational Analysis , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Female , Gene Frequency , Humans , India , Male , Middle Aged , Mutation
19.
PLoS One ; 8(10): e76054, 2013.
Article in English | MEDLINE | ID: mdl-24146815

ABSTRACT

Although the breast cancer susceptibility gene BRCA1 is one of the most extensively characterized genetic loci, much less is known about its upstream variable number tandem repeat element, the RNU2 locus. RNU2 encodes the U2 small nuclear RNA, an essential splicing element, but this locus is missing from the human genome assembly due to the inherent difficulty in the assembly of repetitive sequences. To fill the gap between RNU2 and BRCA1, we have reconstructed the physical map of this region by re-examining genomic clone sequences of public databases, which allowed us to precisely localize the RNU2 array 124 kb telomeric to BRCA1. We measured by performing FISH analyses on combed DNA for the first time the exact number of repeats carried by each of the two alleles in 41 individuals and found a range of 6-82 copies and a level of heterozygosity of 98%. The precise localisation of the RNU2 locus in the genome reference assembly and the implementation of a new technical tool to study it will make the detailed exploration of this locus possible. This recently neglected macrosatellite could be valuable for evaluating the potential role of structural variations in disease due to its location next to a major cancer susceptibility gene.


Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 17/ultrastructure , Genes, BRCA1 , Genetic Loci , RNA, Small Nuclear/genetics , Alleles , Breast Neoplasms/pathology , Female , Gene Expression , Heterozygote , Humans , In Situ Hybridization, Fluorescence , Microsatellite Repeats , Physical Chromosome Mapping
SELECTION OF CITATIONS
SEARCH DETAIL