Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Phys Rev Lett ; 121(25): 257002, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608781

ABSTRACT

To trace the origin of time-reversal symmetry breaking (TRSB) in Re-based superconductors, we performed comparative muon-spin rotation and relaxation (µSR) studies of superconducting noncentrosymmetric Re_{0.82}Nb_{0.18} (T_{c}=8.8 K) and centrosymmetric Re (T_{c}=2.7 K). In Re_{0.82}Nb_{0.18}, the low-temperature superfluid density and the electronic specific heat evidence a fully gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling. In both Re_{0.82}Nb_{0.18} and pure Re, the spontaneous magnetic fields revealed by zero-field µSR below T_{c} indicate time-reversal symmetry breaking and thus unconventional superconductivity. The concomitant occurrence of TRSB in centrosymmetric Re and noncentrosymmetric ReT (T=transition metal), yet its preservation in the isostructural noncentrosymmetric superconductors Mg_{10}Ir_{19}B_{16} and Nb_{0.5}Os_{0.5}, strongly suggests that the local electronic structure of Re is crucial for understanding the TRSB superconducting state in Re and ReT. We discuss the superconducting order parameter symmetries that are compatible with the experimental observations.

2.
Phys Rev Lett ; 115(26): 267001, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26765016

ABSTRACT

The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25 K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

3.
J Phys Condens Matter ; 30(7): 075601, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29355110

ABSTRACT

The properties of the noncentrosymmetric superconductor (α-[Formula: see text] structure) Nb0.5Os0.5 have been investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation (µSR) measurements. These measurements suggest that Nb0.5Os0.5 is a weakly coupled ([Formula: see text]) type-II superconductor ([Formula: see text]), having a bulk superconducting transition temperature T c = 3.07 K. The specific heat data fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb0.5Os0.5. The µSR measurements also confirm [Formula: see text]-wave superconductivity with the preserved time-reversal symmetry.

4.
J Phys Condens Matter ; 30(31): 315803, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-29947614

ABSTRACT

We report the single-crystal synthesis and detailed investigations of the cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD), magnetization, specific-heat and muon-spin relaxation (µSR) measurements. Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18 with T c ≈ 3.5(1) K, a lower critical field [Formula: see text] = 157(9) Oe and an upper critical field, [Formula: see text] = 26(1) kOe. The zero-field electronic specific-heat data are well fitted using a single-gap BCS model, with [Formula: see text] = 0.64(1) meV. The Sommerfeld constant γ varies linearly with the applied magnetic field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and transverse-field (TF) µSR measurements reveal that Sc5Ru6Sn18 is a superconductor with strong electron-phonon coupling, with TF-µSR also suggesting a single-gap s-wave character of the superconductivity. Furthermore, zero-field µSR measurements do not detect spontaneous magnetic fields below T c, hence implying that time-reversal symmetry is preserved in Sc5Ru6Sn18.

SELECTION OF CITATIONS
SEARCH DETAIL