Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Publication year range
1.
Br J Clin Pharmacol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858224

ABSTRACT

Infants bear a significant malaria burden but are usually excluded from participating in early dose optimization studies that inform dosing regimens of antimalarial therapy. Unlike older children, infants' exclusion from early-phase trials has resulted in limited evidence to guide accurate dosing of antimalarial treatment for uncomplicated malaria or malaria-preventive treatment in this vulnerable population. Subsequently, doses used in infants are often extrapolated from older children or adults, with the potential for under- or overdosing. Population pharmacokinetic-pharmacodynamic (PK-PD) modelling, a quantitative methodology that applies mathematical and statistical techniques, can aid the design of clinical studies in infants that collect sparse pharmacokinetic data as well as support the analysis of such data to derive optimized antimalarial dosing in this complex and at-risk yet understudied subpopulation. In this review, we reflect on what PK-PD modelling can do in programmatic settings of most malaria-endemic areas and how it can be used to inform antimalarial dose optimization for preventive and curative treatment of uncomplicated malaria in infants. We outline key developmental physiological changes that affect drug exposure in early life, the challenges of conducting dose optimization studies in infants, and examples of how PK-PD modelling has previously informed antimalarial dose optimization in this subgroup. Additionally, we discuss the limitations and gaps of PK-PD modelling when used for dose optimization in infants. To utilize modelling well, there is a need to generate useful, sparse, PK and PD data in this subpopulation to inform antimalarial optimal dosing in infancy.

2.
PLoS Comput Biol ; 18(8): e1010317, 2022 08.
Article in English | MEDLINE | ID: mdl-35951528

ABSTRACT

BACKGROUND: Sulfadoxine-pyrimethamine (SP) is recommended in Africa in several antimalarial preventive regimens including Intermittent Preventive Treatment in pregnant women (IPTp), Intermittent Preventive Treatment in infants (IPTi) and Seasonal Malaria Chemoprevention (SMC). The effectiveness of SP-based preventive treatments are threatened in areas where Plasmodium falciparum resistance to SP is high. The prevalence of mutations in the dihydropteroate synthase gene (pfdhps) can be used to monitor SP effectiveness. IPTi-SP is recommended only in areas where the prevalence of the pfdhps540E mutation is below 50%. It has also been suggested that IPTp-SP does not have a protective effect in areas where the pfdhps581G mutation, exceeds 10%. However, pfdhps mutation prevalence data in Africa are extremely heterogenous and scattered, with data completely missing from many areas. METHODS AND FINDINGS: The WWARN SP Molecular Surveyor database was designed to summarize dihydrofolate reductase (pfdhfr) and pfdhps gene mutation prevalence data. In this paper, pfdhps mutation prevalence data was used to generate continuous spatiotemporal surface maps of the estimated prevalence of the SP resistance markers pfdhps437G, pfdhps540E, and pfdhps581G in Africa from 1990 to 2020 using a geostatistical model, with a Bayesian inference framework to estimate uncertainty. The maps of estimated prevalence show an expansion of the pfdhps437G mutations across the entire continent over the last three decades. The pfdhps540E mutation emerged from limited foci in East Africa to currently exceeding 50% estimated prevalence in most of East and South East Africa. pfdhps540E distribution is expanding at low or moderate prevalence in central Africa and a predicted focus in West Africa. Although the pfdhps581G mutation spread from one focus in East Africa in 2000, to exceeding 10% estimated prevalence in several foci in 2010, the predicted distribution of the marker did not expand in 2020, however our analysis indicated high uncertainty in areas where pfdhps581G is present. Uncertainty was higher in spatial regions where the prevalence of a marker is intermediate or where prevalence is changing over time. CONCLUSIONS: The WWARN SP Molecular Surveyor database and a set of continuous spatiotemporal surface maps were built to provide users with standardized, current information on resistance marker distribution and prevalence estimates. According to the maps, the high prevalence of pfdhps540E mutation was to date restricted to East and South East Africa, which is reassuring for continued use of IPTi and SMC in West Africa, but continuous monitoring is needed as the pfdhps540E distribution is expanding. Several foci where pfdhps581G prevalence exceeded 10% were identified. More data on the pfdhps581G distribution in these areas needs to be collected to guide IPTp-SP recommendations. Prevalence and uncertainty maps can be utilized together to strategically identify sites where increased surveillance can be most informative. This study combines a molecular marker database and predictive modelling to highlight areas of concern, which can be used to support decisions in public health, highlight knowledge gaps in certain regions, and guide future research.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Bayes Theorem , Drug Combinations , Drug Resistance/genetics , Female , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mutation , Plasmodium falciparum/genetics , Pregnancy , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , South Africa , Sulfadoxine , Tetrahydrofolate Dehydrogenase/genetics
3.
J Infect Dis ; 225(7): 1215-1226, 2022 04 01.
Article in English | MEDLINE | ID: mdl-32778875

ABSTRACT

BACKGROUND: Since the World Health Organization recommended single low-dose (0.25 mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant Plasmodium falciparum, several single-site studies have been conducted to assess efficacy. METHODS: An individual patient meta-analysis to assess gametocytocidal and transmission-blocking efficacy of PQ in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (1) gametocyte carriage in the first 2 weeks post treatment; and (2) the probability of infecting at least 1 mosquito or of a mosquito becoming infected. RESULTS: In 2574 participants from 14 studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytemia on day 0 (odds ratio [OR], 0.22; 95% confidence interval [CI], .17-.28 and OR, 0.12; 95% CI, .08-.16, respectively). Rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (P = .010 for day 7). Addition of 0.25 mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. CONCLUSIONS: Transmission blocking is achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Animals , Artemether/pharmacology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/pharmacology , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Primaquine
4.
Antimicrob Agents Chemother ; 66(12): e0058422, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36374096

ABSTRACT

Dihydroartemisinin-piperaquine, an artemisinin-based combination therapy, has been identified as a promising agent for intermittent preventive treatment of malaria in pregnancy. However, in pregnant women living with HIV (PLWH), efavirenz-based antiretroviral therapy (ART) significantly reduces the plasma exposure of piperaquine. In an open-label, nonrandomized, fixed-sequence, pharmacokinetic study, we compared piperaquine plasma concentrations in 13 pregnant women during a 3-day treatment course of dihydroartemisinin-piperaquine when coadministered with efavirenz-based versus dolutegravir-based ART in the second or third trimester of pregnancy. Piperaquine concentrations were measured over a 28-day period, while on efavirenz-based ART and after switching to dolutegravir-based ART. Noncompartmental analysis was performed, and geometric mean ratios (GMRs) and 90% confidence intervals (CIs) were generated to compare piperaquine pharmacokinetic parameters between these two treatment periods. Compared with efavirenz-based ART, coadministration of dihydroartemisinin-piperaquine and dolutegravir-based ART resulted in a 57% higher overall piperaquine exposure (area under the concentration-time curve from 0 to 672 h [AUC0-672 h]) (GMR, 1.57; 90% CI, 1.28 to 1.93). Piperaquine's day 7 concentrations were also 63% higher (GMR, 1.63; 90% CI, 1.29 to 2.11), while day 28 concentrations were nearly three times higher (GMR, 2.96; 90% CI, 2.25 to 4.07). However, the maximum piperaquine concentration (Cmax) remained similar (GMR, 1.09; 90% CI, 0.79 to 1.49). Dihydroartemisinin-piperaquine was well tolerated, with no medication-related serious adverse events observed in this small study. Compared with efavirenz-based ART, a known inducer of piperaquine metabolism, dolutegravir-based ART resulted in increased overall piperaquine exposure with pharmacokinetic parameter values that were similar to those published previously for pregnant and nonpregnant women. Our findings suggest that the efficacy of dihydroartemisinin-piperaquine will be retained in pregnant women on dolutegravir. (The study was registered on PACTR.samrc.ac.za [PACTR201910580840196].).


Subject(s)
Antimalarials , HIV Infections , Malaria , Quinolines , Female , Humans , Pregnancy , Antimalarials/adverse effects , HIV Infections/drug therapy , HIV Infections/prevention & control , Malaria/drug therapy , Malaria/prevention & control , Pregnant Women , Quinolines/adverse effects
5.
Antimicrob Agents Chemother ; 66(1): e0158421, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34694880

ABSTRACT

Despite repeated malaria infection, individuals living in areas where malaria is endemic remain vulnerable to reinfection. The Janus kinase (JAK1/2) inhibitor ruxolitinib could potentially disrupt the parasite-induced dysfunctional immune response when administered with antimalarial therapy. This randomized, single-blind, placebo-controlled, single-center phase 1 trial investigated the safety, tolerability, and pharmacokinetic and pharmacodynamic profile of ruxolitinib and the approved antimalarial artemether-lumefantrine in combination. Ruxolitinib pharmacodynamics were assessed by inhibition of phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Eight healthy male and female participants ages 18 to 55 years were randomized to either ruxolitinib (20 mg) (n = 6) or placebo (n = 2) administered 2 h after artemether-lumefantrine (80/480 mg) twice daily for 3 days. Mild adverse events occurred in six participants (four ruxolitinib; two placebo). The combination of artemether-lumefantrine and ruxolitinib was well tolerated, with adverse events and pharmacokinetics consistent with the known profiles of both drugs. The incidence of adverse events and artemether, dihydroartemisinin (the major active metabolite of artemether), and lumefantrine exposure were not affected by ruxolitinib coadministration. Ruxolitinib coadministration resulted in a 3-fold-greater pSTAT3 inhibition compared to placebo (geometric mean ratio = 3.01 [90% confidence interval = 2.14 to 4.24]), with a direct and predictable relationship between ruxolitinib plasma concentrations and %pSTAT3 inhibition. This study supports the investigation of the combination of artemether-lumefantrine and ruxolitinib in healthy volunteers infected with Plasmodium falciparum malaria. (This study has been registered at ClinicalTrials.gov under registration no. NCT04456634.).


Subject(s)
Antimalarials , Malaria, Falciparum , Adolescent , Adult , Antimalarials/adverse effects , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Drug Combinations , Ethanolamines/therapeutic use , Female , Fluorenes/therapeutic use , Humans , Lumefantrine/therapeutic use , Malaria, Falciparum/drug therapy , Male , Middle Aged , Nitriles , Pyrazoles , Pyrimidines , Single-Blind Method , Young Adult
6.
BMC Med ; 20(1): 350, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36109733

ABSTRACT

BACKGROUND: In 2012, the World Health Organization (WHO) recommended single low-dose (SLD, 0.25 mg/kg) primaquine to be added as a Plasmodium (P.) falciparum gametocytocide to artemisinin-based combination therapy (ACT) without glucose-6-phosphate dehydrogenase (G6PD) testing, to accelerate malaria elimination efforts and avoid the spread of artemisinin resistance. Uptake of this recommendation has been relatively slow primarily due to safety concerns. METHODS: A systematic review and individual patient data (IPD) meta-analysis of single-dose (SD) primaquine studies for P. falciparum malaria were performed. Absolute and fractional changes in haemoglobin concentration within a week and adverse effects within 28 days of treatment initiation were characterised and compared between primaquine and no primaquine arms using random intercept models. RESULTS: Data comprised 20 studies that enrolled 6406 participants, of whom 5129 (80.1%) had received a single target dose of primaquine ranging between 0.0625 and 0.75 mg/kg. There was no effect of primaquine in G6PD-normal participants on haemoglobin concentrations. However, among 194 G6PD-deficient African participants, a 0.25 mg/kg primaquine target dose resulted in an additional 0.53 g/dL (95% CI 0.17-0.89) reduction in haemoglobin concentration by day 7, with a 0.27 (95% CI 0.19-0.34) g/dL haemoglobin drop estimated for every 0.1 mg/kg increase in primaquine dose. Baseline haemoglobin, young age, and hyperparasitaemia were the main determinants of becoming anaemic (Hb < 10 g/dL), with the nadir observed on ACT day 2 or 3, regardless of G6PD status and exposure to primaquine. Time to recovery from anaemia took longer in young children and those with baseline anaemia or hyperparasitaemia. Serious adverse haematological events after primaquine were few (9/3, 113, 0.3%) and transitory. One blood transfusion was reported in the primaquine arms, and there were no primaquine-related deaths. In controlled studies, the proportions with either haematological or any serious adverse event were similar between primaquine and no primaquine arms. CONCLUSIONS: Our results support the WHO recommendation to use 0.25 mg/kg of primaquine as a P. falciparum gametocytocide, including in G6PD-deficient individuals. Although primaquine is associated with a transient reduction in haemoglobin levels in G6PD-deficient individuals, haemoglobin levels at clinical presentation are the major determinants of anaemia in these patients. TRIAL REGISTRATION: PROSPERO, CRD42019128185.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Primaquine , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Child , Child, Preschool , Glucosephosphate Dehydrogenase , Hemoglobins/analysis , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Primaquine/therapeutic use
7.
J Antimicrob Chemother ; 77(6): 1733-1737, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35288747

ABSTRACT

BACKGROUND: In sub-Saharan Africa, the burdens of malaria and HIV infections overlap. In settings with moderate-to-high malaria transmission intensity, pregnant women living with HIV (PLWH) require both ART and malaria intermittent preventive treatment (IPTp). Dihydroartemisinin/piperaquine has been identified as a promising alternative to sulfadoxine/pyrimethamine for IPTp. However, another antimalarial drug, artesunate/amodiaquine, similar to dihydroartemisinin/piperaquine, was previously shown to reduce dolutegravir exposure in non-pregnant adults. OBJECTIVES: To investigate the effect of dihydroartemisinin/piperaquine on dolutegravir plasma exposure in pregnant women on dolutegravir-based ART. METHODS: We conducted an open-label, non-randomized, fixed-sequence, pharmacokinetic study in PLWH in Malawi. Dolutegravir concentrations were measured over a 24 h period, before and after the recommended 3 day treatment dose of dihydroartemisinin/piperaquine in 12 pregnant women in their second or third trimester. Non-compartmental analysis was performed, and geometric mean ratios (GMRs) and 90% CIs were generated to compare dolutegravir pharmacokinetic parameters between the two treatment periods. RESULTS: Co-administration of dihydroartemisinin/piperaquine and dolutegravir increased dolutegravir's overall exposure (AUC0-24) and Cmax by 30% (GMR 1.30; 90% CI 1.11-1.52) and 31% (GMR 1.31; 90% CI 1.13-1.51), respectively. The dolutegravir trough (C24) concentration increased by 42% (GMR 1.42; 90% CI 1.09-1.85). The combined treatments were well tolerated with no serious adverse events observed. CONCLUSIONS: Dihydroartemisinin/piperaquine may be administered with dolutegravir-based ART in pregnant women as the modest increase in dolutegravir exposure, similar to pharmacokinetic parameter values published previously, ensures its efficacy without any clinically significant adverse events observed in this small study.


Subject(s)
Antimalarials , Artemisinins , HIV Infections , Malaria , Pregnancy Complications, Parasitic , Quinolines , Adult , Antimalarials/adverse effects , Artemisinins/adverse effects , Drug Combinations , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Heterocyclic Compounds, 3-Ring , Humans , Malaria/drug therapy , Malaria/prevention & control , Oxazines , Piperazines , Pregnancy , Pregnancy Complications, Parasitic/chemically induced , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Complications, Parasitic/prevention & control , Pregnant Women , Pyridones
8.
Malar J ; 21(1): 207, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768869

ABSTRACT

BACKGROUND: Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. METHODS: From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. RESULTS: Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated  Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. CONCLUSION: Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Humans , Lumefantrine/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , South Africa
9.
Malar J ; 20(1): 18, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407454

ABSTRACT

BACKGROUND: Accurate measurement of anti-malarial drug concentrations in therapeutic efficacy studies is essential to distinguish between inadequate drug exposure and anti-malarial drug resistance, and to inform optimal anti-malarial dosing in key target population groups. METHODS: A sensitive and selective LC-MS/MS method was developed and validated for the simultaneous determination of amodiaquine and its active metabolite, desethylamodiaquine, and used to describe their pharmacokinetic parameters in Ghanaian patients with uncomplicated falciparum malaria treated with the fixed-dose combination, artesunate-amodiaquine. RESULTS: The day-28 genotype-adjusted adequate clinical and parasitological response rate in 308 patients studied was > 97% by both intention-to-treat and per-protocol analysis. After excluding 64 patients with quantifiable amodiaquine concentrations pre-treatment and 17 with too few quantifiable concentrations, the pharmacokinetic analysis included 227 patients (9 infants, 127 aged 1-4 years, 91 aged ≥ 5 years). Increased median day-3 amodiaquine concentrations were associated with a lower risk of treatment failure [HR 0.87 (95% CI 0.78-0.98), p = 0.021]. Amodiaquine exposure (median AUC0-∞) was significantly higher in infants (4201 ng h/mL) and children aged 1-5 years (1994 ng h/mL) compared to older children and adults (875 ng h/mL, p = 0.001), even though infants received a lower mg/kg amodiaquine dose (median 25.3 versus 33.8 mg/kg in older patients). Desethylamodiaquine AUC0-∞ was not significantly associated with age. No significant safety concerns were identified. CONCLUSIONS: Efficacy of artesunate-amodiaquine at currently recommended dosage regimens was high across all age groups. Reassuringly, amodiaquine and desethylamodiaquine exposure was not reduced in underweight-for-age young children or those with high parasitaemia, two of the most vulnerable target populations. A larger pharmacokinetic study with close monitoring of safety, including full blood counts and liver function tests, is needed to confirm the higher amodiaquine exposure in infants, understand any safety implications and assess whether dose optimization in this vulnerable, understudied population is needed.


Subject(s)
Amodiaquine/analogs & derivatives , Amodiaquine/pharmacokinetics , Antimalarials/pharmacokinetics , Malaria, Falciparum/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Amodiaquine/administration & dosage , Artemisinins/administration & dosage , Child , Child, Preschool , Chromatography, Liquid/methods , Drug Combinations , Female , Ghana , Humans , Infant , Malaria, Falciparum/parasitology , Male , Middle Aged , Tandem Mass Spectrometry/methods , Young Adult
10.
PLoS Med ; 17(3): e1003040, 2020 03.
Article in English | MEDLINE | ID: mdl-32134952

ABSTRACT

BACKGROUND: Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS: Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Electrocardiography , Heart Conduction System/physiopathology , Heart Rate , Malaria/physiopathology , Action Potentials , Adolescent , Adult , Aged , Aged, 80 and over , Antimalarials/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/parasitology , Body Temperature Regulation , Cardiotoxicity , Child , Child, Preschool , Female , Heart Conduction System/drug effects , Heart Conduction System/parasitology , Heart Rate/drug effects , Humans , Infant , Malaria/diagnosis , Malaria/drug therapy , Malaria/parasitology , Male , Middle Aged , Predictive Value of Tests , Risk Assessment , Risk Factors , Severity of Illness Index , Treatment Outcome , Young Adult
11.
Article in English | MEDLINE | ID: mdl-31932368

ABSTRACT

MMV390048 is a novel antimalarial compound that inhibits Plasmodium phosphatidylinositol-4-kinase. The safety, tolerability, pharmacokinetic profile, and antimalarial activity of MMV390048 were determined in healthy volunteers in three separate studies. A first-in-human, double-blind, randomized, placebo-controlled, single-ascending-dose study was performed. Additionally, a volunteer infection study investigated the antimalarial activity of MMV390048 using the Plasmodium falciparum induced blood-stage malaria (IBSM) model. Due to the high pharmacokinetic variability with the powder-in-bottle formulation used in both of these studies, a third study was undertaken to select a tablet formulation of MMV390048 to take forward into future studies. MMV390048 was generally well tolerated when administered as a single oral dose up to 120 mg, with rapid absorption and a long elimination half-life. Twelve adverse events were considered to be potentially related to MMV390048 in the first-in-human study but with no obvious correlation between these and MMV390048 dose or exposure. Although antimalarial activity was evident in the IBSM study, rapid recrudescence occurred in most subjects after treatment with 20 mg MMV390048, a dose expected to be subtherapeutic. Reformulation of MMV390048 into two tablet formulations (tartaric acid and Syloid) resulted in significantly reduced intersubject pharmacokinetic variability. Overall, the results of this study suggest that MMV390048 is well tolerated in humans, and the pharmacokinetic properties of the compound indicate that it has the potential to be used for antimalarial prophylaxis or inclusion in a single-dose cure. MMV390048 is currently being tested in a phase 2a study in Ethiopian adults with acute, uncomplicated falciparum or vivax malaria monoinfection. (The three clinical trials described here were each registered with ClinicalTrials.gov as follows: first-in-human study, registration no. NCT02230579; IBSM study, registration no. NCT02281344; and formulation optimization study, registration no. NCT02554799.).


Subject(s)
Aminopyridines/pharmacology , Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Sulfones/pharmacology , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Adult , Aminopyridines/adverse effects , Aminopyridines/pharmacokinetics , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Clinical Trials, Phase I as Topic , Double-Blind Method , Female , Healthy Volunteers , Humans , Male , Sulfones/adverse effects , Sulfones/pharmacokinetics
12.
Article in English | MEDLINE | ID: mdl-32071050

ABSTRACT

Treating malaria in HIV-coinfected individuals should consider potential drug-drug interactions. Artemether-lumefantrine is the most widely recommended treatment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an enzyme that commonly used antiretrovirals often induce or inhibit. A population pharmacokinetic meta-analysis was conducted using individual participant data from 10 studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants (41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy volunteers). Lumefantrine exposure increased 3.4-fold with coadministration of lopinavir-ritonavir-based antiretroviral therapy (ART), while it decreased by 47% with efavirenz-based ART and by 59% in the patients with rifampin-based antituberculosis treatment. Nevirapine- or dolutegravir-based ART and malaria or HIV infection were not associated with significant effects. Monte Carlo simulations showed that those on concomitant efavirenz or rifampin have 49% and 80% probability of day 7 concentrations <200 ng/ml, respectively, a threshold associated with an increased risk of treatment failure. The risk of achieving subtherapeutic concentrations increases with larger body weight. An extended 5-day and 6-day artemether-lumefantrine regimen is predicted to overcome these drug-drug interactions with efavirenz and rifampin, respectively.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Antimalarials/pharmacokinetics , Antiretroviral Therapy, Highly Active , Lumefantrine/pharmacokinetics , Adolescent , Adult , Aged , Anti-HIV Agents/therapeutic use , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacokinetics , Artemether, Lumefantrine Drug Combination/therapeutic use , Body Weight , Computer Simulation , Drug Interactions , Female , HIV Infections/complications , HIV Infections/drug therapy , Humans , Lopinavir/pharmacokinetics , Lopinavir/therapeutic use , Lumefantrine/therapeutic use , Malaria/complications , Malaria/drug therapy , Male , Middle Aged , Monte Carlo Method , Ritonavir/pharmacokinetics , Ritonavir/therapeutic use , Young Adult
13.
Malar J ; 18(1): 209, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234865

ABSTRACT

BACKGROUND: To reduce onward falciparum malaria transmission, the World Health Organization recommends adding single low-dose (SLD) primaquine to artemisinin-based combination treatment in low transmission areas. However, uptake of this recommendation has been relatively slow given concerns about whether individual risks justify potential community benefit. This study was undertaken to generate comprehensive local data on the risk-benefit profile of SLD primaquine deployment in a pre-elimination area in South Africa. METHODS: This randomized, controlled open-label trial investigated adding a single low primaquine dose on day 3 to standard artemether-lumefantrine treatment for uncomplicated falciparum malaria. Efficacy, safety and tolerability of artemether-lumefantrine and primaquine treatment were assessed on days 3, 7, 14, 28 and 42. Lumefantrine concentrations were assayed from dried blood spot samples collected on day 7. RESULTS: Of 217 patients screened, 166 were enrolled with 140 randomized on day 3, 70 to each study arm (primaquine and no primaquine). No gametocytes were detected by either microscopy or PCR in any of the follow-up samples collected after randomization on day 3, precluding assessment of primaquine efficacy. Prevalence of the CYP2D6*4, CYP2D6*10 and CYP2D6*17 mutant alleles was low with allelic frequencies of 0.02, 0.11 and 0.16, respectively; none had the CYP2D6*4/*4 variant associated with null activity. Among 172 RDT-positive patients G6PD-genotyped, 24 (14%) carried the G6PD deficient (A-) variant. Median haemoglobin concentrations were similar between treatment arms throughout follow-up. A third of participants had a haemoglobin drop > 2 g/dL; this was not associated with primaquine treatment but may be associated with G6PD genotype [52.9% (9/17) with A- genotype vs. 31% (36/116) with other genotypes (p = 0.075)]. Day 7 lumefantrine concentrations and the number and nature of adverse events were similar between study arms; only one serious adverse event occurred (renal impairment in the no primaquine arm). The artemether-lumefantrine PCR-corrected adequate clinical and parasitological response rate was 100%, with only one re-infection found among the 128 patients who completed 42-day follow-up. CONCLUSIONS: Safety, tolerability, CYP2D6 and G6PD variant data from this study support the deployment of the WHO-recommended SLD primaquine without G6PD testing to advance malaria elimination in South African districts with low-intensity residual transmission. Trial registration Pan African Clinical Trial Registry, PACTR201611001859416. Registered 11 November 2016, https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1859.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Primaquine/therapeutic use , Adult , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/therapeutic use , Cytochrome P-450 CYP2D6/genetics , Female , Gene Frequency , Genotype , Glucosephosphate Dehydrogenase/genetics , Humans , Lumefantrine/blood , Male , Mutation , Primaquine/adverse effects , South Africa , Treatment Outcome
14.
Malar J ; 18(1): 280, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31438951

ABSTRACT

BACKGROUND: The ability of Plasmodium falciparum parasites to develop resistance to widely used anti-malarials threatens malaria control and elimination efforts. Regular drug efficacy monitoring is essential for ensuring effective treatment policies. In low transmission settings where therapeutic efficacy studies are often not feasible, routine surveillance for molecular markers associated with anti-malarial resistance provides an alternative for the early detection of emerging resistance. Such a longitudinal survey of changes in the prevalence of selected molecular markers of resistance was conducted in the malaria-endemic regions of Mpumalanga Province, South Africa, where malaria elimination at a district-level is being pursued. METHODS: Molecular analyses to determine the prevalence of alleles associated with resistance to lumefantrine (mdr86N, crt76K and mdr1 copy number variation) and sulfadoxine-pyrimethamine (dhfr triple, dhps double, SP quintuple) were conducted between 2001 and 2018, while artemisinin resistance markers (kelch13 mutations) were assessed only in 2018. RESULTS: Parasite DNA was successfully amplified from 1667/2393 (70%) of malaria-positive rapid diagnostic tests routinely collected at primary health care facilities. No artemisinin resistance-associated kelch13 mutations nor amplification of the mdr1 gene copy number associated with lumefantrine resistance were observed. However, prevalence of both the mdr86N and crt76K alleles increased markedly over the study period, with all isolates collected in 2018 carrying these markers. SP quintuple mutation prevalence increased steadily from 14% in 2001 to 96% in 2018. Mixed alleles at any of the codons assessed were rare by 2018. CONCLUSION: No kelch13 mutations confirmed or suspected to be associated with artemisinin resistance were identified in 2018. Although parasites carrying the mdr86N and crt76K alleles associated with reduced lumefantrine susceptibility were strongly selected for over the study period, nearing fixation by 2018, the marker for lumefantrine resistance, namely increased mdr1 copy number, was not observed in this study. The increase in mdr86N and crt76K allele prevalence together with intense regional artemether-lumefantrine drug pressure, raises concern regarding the sustained artemether-lumefantrine efficacy. Regular, rigorous anti-malarial resistance marker surveillance across all three South African malaria-endemic provinces to inform case management is recommended.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Lumefantrine/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Diagnostic Tests, Routine , Drug Combinations , Drug Therapy, Combination , Genetic Markers , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism , Selection, Genetic , South Africa
15.
PLoS Med ; 15(6): e1002579, 2018 06.
Article in English | MEDLINE | ID: mdl-29894518

ABSTRACT

BACKGROUND: The fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations. METHODS AND FINDINGS: A search in PubMed, Embase, ClinicalTrials.gov, Google Scholar, conference proceedings, and the WorldWide Antimalarial Resistance Network (WWARN) pharmacology database identified 31 relevant clinical studies published between 1 January 1990 and 31 December 2012, with 4,546 patients in whom lumefantrine concentrations were measured. Under the auspices of WWARN, relevant individual concentration-time data, clinical covariates, and outcome data from 4,122 patients were made available and pooled for the meta-analysis. The developed lumefantrine population pharmacokinetic model was used for dose optimisation through in silico simulations. Venous plasma lumefantrine concentrations 7 days after starting standard AL treatment were 24.2% and 13.4% lower in children weighing <15 kg and 15-25 kg, respectively, and 20.2% lower in pregnant women compared with non-pregnant adults. Lumefantrine exposure decreased with increasing pre-treatment parasitaemia, and the dose limitation on absorption of lumefantrine was substantial. Simulations using the lumefantrine pharmacokinetic model suggest that, in young children and pregnant women beyond the first trimester, lengthening the dose regimen (twice daily for 5 days) and, to a lesser extent, intensifying the frequency of dosing (3 times daily for 3 days) would be more efficacious than using higher individual doses in the current standard treatment regimen (twice daily for 3 days). The model was developed using venous plasma data from patients receiving intact tablets with fat, and evaluations of alternative dosing regimens were consequently only representative for venous plasma after administration of intact tablets with fat. The absence of artemether-dihydroartemisinin data limited the prediction of parasite killing rates and recrudescent infections. Thus, the suggested optimised dosing schedule was based on the pharmacokinetic endpoint of lumefantrine plasma exposure at day 7. CONCLUSIONS: Our findings suggest that revised AL dosing regimens for young children and pregnant women would improve drug exposure but would require longer or more complex schedules. These dosing regimens should be evaluated in prospective clinical studies to determine whether they would improve cure rates, demonstrate adequate safety, and thereby prolong the useful therapeutic life of this valuable antimalarial treatment.


Subject(s)
Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Artemether, Lumefantrine Drug Combination/therapeutic use , Antimalarials/pharmacokinetics , Artemether, Lumefantrine Drug Combination/pharmacokinetics , Child, Preschool , Dose-Response Relationship, Drug , Ethanolamines/metabolism , Ethanolamines/pharmacokinetics , Ethanolamines/pharmacology , Female , Fluorenes/metabolism , Fluorenes/pharmacokinetics , Fluorenes/pharmacology , Humans , Infant , Infant, Newborn , Malaria, Falciparum/drug therapy , Male , Models, Chemical , Pregnancy
16.
Article in English | MEDLINE | ID: mdl-29463542

ABSTRACT

Sulfadoxine-pyrimethamine with amodiaquine is recommended by the World Health Organization as seasonal malaria chemoprevention for children aged 3 to 59 months in the sub-Sahel regions of Africa. Suboptimal dosing in children may lead to treatment failure and increased resistance. Pooled individual patient data from four previously published trials on the pharmacokinetics of sulfadoxine and pyrimethamine in 415 pediatric and 386 adult patients were analyzed using nonlinear mixed-effects modeling to evaluate the current dosing regimen and, if needed, to propose an optimized dosing regimen for children under 5 years of age. The population pharmacokinetics of sulfadoxine and pyrimethamine were both best described by a one-compartment disposition model with first-order absorption and elimination. Body weight, age, and nutritional status (measured as the weight-for-age Z-score) were found to be significant covariates. Allometric scaling with total body weight and the maturation of clearance in children by postgestational age improved the model fit. Underweight-for-age children were found to have 15.3% and 26.7% lower bioavailabilities of sulfadoxine and pyrimethamine, respectively, for each Z-score unit below -2. Under current dosing recommendations, simulation predicted that the median day 7 concentration was below the 25th percentile for a typical adult patient (50 kg) for sulfadoxine for patients in the weight bands of 8 to 9, 19 to 24, 46 to 49, and 74 to 79 kg and for pyrimethamine for patients in the weight bands of 8 to 9, 14 to 24, and 42 to 49 kg. An evidence-based dosing regimen was constructed that would achieve sulfadoxine and pyrimethamine exposures in young children and underweight-for-age young children that were similar to those currently seen in a typical adult.


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Pyrimethamine/pharmacokinetics , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacokinetics , Sulfadoxine/therapeutic use , Africa , Age Factors , Amodiaquine/administration & dosage , Antimalarials/administration & dosage , Biomarkers, Pharmacological , Body Weight , Chemoprevention/methods , Child, Preschool , Drug Combinations , Female , Humans , Infant , Male , Nutritional Status , Plasmodium falciparum/drug effects , Pyrimethamine/administration & dosage , Sulfadoxine/administration & dosage
17.
Article in English | MEDLINE | ID: mdl-30038039

ABSTRACT

Amodiaquine plus artesunate is the recommended antimalarial treatment in many countries where malaria is endemic. However, pediatric doses are largely based on a linear extrapolation from adult doses. We pooled data from previously published studies on the pharmacokinetics of amodiaquine, to optimize the dose across all age groups. Adults and children with uncomplicated malaria received daily weight-based doses of amodiaquine or artesunate-amodiaquine over 3 days. Plasma concentration-time profiles for both the parent drug and the metabolite were characterized using nonlinear mixed-effects modeling. Amodiaquine pharmacokinetics were adequately described by a two-compartment disposition model, with first-order elimination leading to the formation of desethylamodiaquine, which was best described by a three-compartment disposition model. Body size and age were the main covariates affecting amodiaquine clearance. After adjusting for the effect of weight, clearance rates for amodiaquine and desethylamodiaquine reached 50% of adult maturation at 2.8 months (95% confidence interval [CI], 1.5 to 3.7 months) and 3.9 months (95% CI, 2.6 to 5.3 months) after birth, assuming that the baby was born at term. Bioavailability was 22.4% (95% CI, 15.6 to 31.9%) lower at the start of treatment than during convalescence, which suggests a malaria disease effect. Neither the drug formulation nor the hemoglobin concentration had an effect on any pharmacokinetic parameters. Results from simulations showed that current manufacturer dosing recommendations resulted in low desethylamodiaquine exposure in patients weighing 8 kg, 15 to 17 kg, 33 to 35 kg, and >62 kg compared to that in a typical 50-kg patient. We propose possible optimized dosing regimens to achieve similar drug exposures among all age groups, which require further validation.


Subject(s)
Amodiaquine/pharmacokinetics , Antimalarials/pharmacokinetics , Adolescent , Adult , Amodiaquine/administration & dosage , Antimalarials/administration & dosage , Child , Child, Preschool , Drug Administration Schedule , Female , Humans , Infant , Malaria , Male , Middle Aged , Pediatrics , Young Adult
19.
BMC Med ; 16(1): 11, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29347975

ABSTRACT

BACKGROUND: In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS: Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS: From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS: We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/prevention & control , Primaquine/therapeutic use , Adolescent , Adult , Africa South of the Sahara , Age Factors , Aged , Aged, 80 and over , Antimalarials/administration & dosage , Antimalarials/adverse effects , Child , Child, Preschool , Clinical Protocols , Dose-Response Relationship, Drug , Female , Glucosephosphate Dehydrogenase Deficiency , Humans , Infant , Malaria, Falciparum/drug therapy , Malaria, Falciparum/transmission , Male , Middle Aged , Plasmodium falciparum , Primaquine/administration & dosage , Primaquine/adverse effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL