Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Cell ; 180(3): 502-520.e19, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31983537

ABSTRACT

The tumor microenvironment (TME) is critical for tumor progression. However, the establishment and function of the TME remain obscure because of its complex cellular composition. Using a mouse genetic system called mosaic analysis with double markers (MADMs), we delineated TME evolution at single-cell resolution in sonic hedgehog (SHH)-activated medulloblastomas that originate from unipotent granule neuron progenitors in the brain. First, we found that astrocytes within the TME (TuAstrocytes) were trans-differentiated from tumor granule neuron precursors (GNPs), which normally never differentiate into astrocytes. Second, we identified that TME-derived IGF1 promotes tumor progression. Third, we uncovered that insulin-like growth factor 1 (IGF1) is produced by tumor-associated microglia in response to interleukin-4 (IL-4) stimulation. Finally, we found that IL-4 is secreted by TuAstrocytes. Collectively, our studies reveal an evolutionary process that produces a multi-lateral network within the TME of medulloblastoma: a fraction of tumor cells trans-differentiate into TuAstrocytes, which, in turn, produce IL-4 that stimulates microglia to produce IGF1 to promote tumor progression.


Subject(s)
Astrocytes/metabolism , Carcinogenesis/metabolism , Cell Transdifferentiation , Cerebellar Neoplasms/metabolism , Medulloblastoma/metabolism , Paracrine Communication , Animals , Cell Lineage , Cerebellar Neoplasms/pathology , Disease Models, Animal , Female , Hedgehog Proteins/metabolism , Heterografts , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Male , Medulloblastoma/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Tumor Microenvironment
2.
Cell ; 179(1): 132-146.e14, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31522887

ABSTRACT

Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.


Subject(s)
Carrier Proteins/metabolism , Golgi Apparatus/metabolism , Microtubules/metabolism , Myelin Sheath/metabolism , Nerve Tissue Proteins/metabolism , Animals , Animals, Newborn , Axons/metabolism , Carrier Proteins/genetics , Cell-Free System/metabolism , Cells, Cultured , Escherichia coli/metabolism , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Organizing Center/metabolism , Nerve Tissue Proteins/genetics , Oligodendrocyte Precursor Cells/metabolism , Rats , Rats, Sprague-Dawley , Tubulin/metabolism
3.
Cell ; 176(1-2): 43-55.e13, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30528430

ABSTRACT

Chemotherapy results in a frequent yet poorly understood syndrome of long-term neurological deficits. Neural precursor cell dysfunction and white matter dysfunction are thought to contribute to this debilitating syndrome. Here, we demonstrate persistent depletion of oligodendrocyte lineage cells in humans who received chemotherapy. Developing a mouse model of methotrexate chemotherapy-induced neurological dysfunction, we find a similar depletion of white matter OPCs, increased but incomplete OPC differentiation, and a persistent deficit in myelination. OPCs from chemotherapy-naive mice similarly exhibit increased differentiation when transplanted into the microenvironment of previously methotrexate-exposed brains, indicating an underlying microenvironmental perturbation. Methotrexate results in persistent activation of microglia and subsequent astrocyte activation that is dependent on inflammatory microglia. Microglial depletion normalizes oligodendroglial lineage dynamics, myelin microstructure, and cognitive behavior after methotrexate chemotherapy. These findings indicate that methotrexate chemotherapy exposure is associated with persistent tri-glial dysregulation and identify inflammatory microglia as a therapeutic target to abrogate chemotherapy-related cognitive impairment. VIDEO ABSTRACT.


Subject(s)
Cognitive Dysfunction/chemically induced , Methotrexate/adverse effects , Oligodendroglia/drug effects , Animals , Brain/metabolism , Cell Differentiation , Cell Lineage , Cognitive Dysfunction/metabolism , Disease Models, Animal , Drug Therapy , Drug-Related Side Effects and Adverse Reactions , Humans , Methotrexate/pharmacology , Mice , Microglia/metabolism , Myelin Sheath/metabolism , Nerve Fibers, Myelinated , Neurogenesis/physiology , Neuroglia/metabolism , Neurons/drug effects , Oligodendroglia/metabolism , White Matter/metabolism
4.
Cell ; 175(7): 1811-1826.e21, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30503207

ABSTRACT

Nervous system function depends on proper myelination for insulation and critical trophic support for axons. Myelination is tightly regulated spatially and temporally, but how it is controlled molecularly remains largely unknown. Here, we identified key molecular mechanisms governing the regional and temporal specificity of CNS myelination. We show that transcription factor EB (TFEB) is highly expressed by differentiating oligodendrocytes and that its loss causes precocious and ectopic myelination in many parts of the murine brain. TFEB functions cell-autonomously through PUMA induction and Bax-Bak activation to promote programmed cell death of a subset of premyelinating oligodendrocytes, allowing selective elimination of oligodendrocytes in normally unmyelinated brain regions. This pathway is conserved across diverse brain areas and is critical for myelination timing. Our findings define an oligodendrocyte-intrinsic mechanism underlying the spatiotemporal specificity of CNS myelination, shedding light on how myelinating glia sculpt the nervous system during development.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain/metabolism , Myelin Sheath/metabolism , Neuroglia/metabolism , Oligodendroglia/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Brain/cytology , Female , Male , Mice , Mice, Knockout , Myelin Sheath/genetics , Neuroglia/cytology , Oligodendroglia/cytology , Tumor Suppressor Proteins/genetics
5.
Cell ; 165(4): 775-6, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27153490

ABSTRACT

Glial cells are essential components of the nervous system. In this issue, Singhvi et al. uncover cellular and molecular mechanisms through which C. elegans glia shape sensory neuron terminals and thus control animal thermosensing behaviors.


Subject(s)
Caenorhabditis elegans , Neuroglia , Animals , Neurons , Sensory Receptor Cells
6.
Cell ; 165(4): 921-35, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27114033

ABSTRACT

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


Subject(s)
Aging/metabolism , Brain/metabolism , Complement Activation , Complement C1q/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Microglia/metabolism , Aging/immunology , Animals , Cerebrospinal Fluid , Complement C1q/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Granulins , Humans , Immunity, Innate , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Lysosomes/metabolism , Metabolic Networks and Pathways , Mice , Obsessive-Compulsive Disorder/genetics , Obsessive-Compulsive Disorder/metabolism , Progranulins , Synapses/metabolism , Thalamus/metabolism
7.
Cell ; 154(2): 267-8, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23870116

ABSTRACT

The wiring of the nervous system requires that axons navigate to the correct targets and maintain their correct positions during developmental growth. In this issue, Shao et al. (2013) now reveal a crucial new role for glia in preserving correct synaptic connectivity during developmental growth.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Neuroglia/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Sodium-Phosphate Cotransporter Proteins, Type I/metabolism , Synapses , Animals
8.
Immunity ; 48(5): 1014-1028.e6, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29752062

ABSTRACT

Stromal cells (SCs) establish the compartmentalization of lymphoid tissues critical to the immune response. However, the full diversity of lymph node (LN) SCs remains undefined. Using droplet-based single-cell RNA sequencing, we identified nine peripheral LN non-endothelial SC clusters. Included are the established subsets, Ccl19hi T-zone reticular cells (TRCs), marginal reticular cells, follicular dendritic cells (FDCs), and perivascular cells. We also identified Ccl19lo TRCs, likely including cholesterol-25-hydroxylase+ cells located at the T-zone perimeter, Cxcl9+ TRCs in the T-zone and interfollicular region, CD34+ SCs in the capsule and medullary vessel adventitia, indolethylamine N-methyltransferase+ SCs in the medullary cords, and Nr4a1+ SCs in several niches. These data help define how transcriptionally distinct LN SCs support niche-restricted immune functions and provide evidence that many SCs are in an activated state.


Subject(s)
Lymph Nodes/immunology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Stromal Cells/immunology , Transcriptome/immunology , Animals , Chemokine CCL19/genetics , Chemokine CCL19/immunology , Chemokine CCL19/metabolism , Dendritic Cells, Follicular/immunology , Dendritic Cells, Follicular/metabolism , Female , Lymph Nodes/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice, Inbred C57BL , Stromal Cells/metabolism
9.
Nature ; 599(7883): 102-107, 2021 11.
Article in English | MEDLINE | ID: mdl-34616039

ABSTRACT

Astrocytes regulate the response of the central nervous system to disease and injury and have been hypothesized to actively kill neurons in neurodegenerative disease1-6. Here we report an approach to isolate one component of the long-sought astrocyte-derived toxic factor5,6. Notably, instead of a protein, saturated lipids contained in APOE and APOJ lipoparticles mediate astrocyte-induced toxicity. Eliminating the formation of long-chain saturated lipids by astrocyte-specific knockout of the saturated lipid synthesis enzyme ELOVL1 mitigates astrocyte-mediated toxicity in vitro as well as in a model of acute axonal injury in vivo. These results suggest a mechanism by which astrocytes kill cells in the central nervous system.


Subject(s)
Astrocytes/chemistry , Astrocytes/metabolism , Cell Death/drug effects , Lipids/chemistry , Lipids/toxicity , Animals , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/toxicity , Fatty Acid Elongases/deficiency , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Female , Gene Knockout Techniques , Male , Mice , Mice, Knockout , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurotoxins/chemistry , Neurotoxins/toxicity
10.
Immunity ; 46(6): 957-967, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636962

ABSTRACT

Astrocytes constitute approximately 30% of the cells in the mammalian central nervous system (CNS). They are integral to brain and spinal-cord physiology and perform many functions important for normal neuronal development, synapse formation, and proper propagation of action potentials. We still know very little, however, about how these functions change in response to immune attack, chronic neurodegenerative disease, or acute trauma. In this review, we summarize recent studies that demonstrate that different initiating CNS injuries can elicit at least two types of "reactive" astrocytes with strikingly different properties, one type being helpful and the other harmful. We will also discuss new methods for purifying and investigating reactive-astrocyte functions and provide an overview of new markers for delineating these different states of reactive astrocytes. The discovery that astrocytes have different types of reactive states has important implications for the development of new therapies for CNS injury and diseases.


Subject(s)
Astrocytes/physiology , Biological Therapy/trends , Brain/immunology , Central Nervous System/immunology , Neurodegenerative Diseases/immunology , Animals , Humans , Neurodegenerative Diseases/therapy , Neurons/physiology
11.
Cell ; 138(1): 172-85, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19596243

ABSTRACT

The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an evolutionarily conserved DNA binding domain homologous to a yeast transcription factor. Knockdown of MRF in oligodendrocytes by RNA interference prevents expression of most CNS myelin genes; conversely, overexpression of MRF within cultured oligodendrocyte progenitors or the chick spinal cord promotes expression of myelin genes. In mice lacking MRF within the oligodendrocyte lineage, premyelinating oligodendrocytes are generated but display severe deficits in myelin gene expression and fail to myelinate. These mice display severe neurological abnormalities and die because of seizures during the third postnatal week. These findings establish MRF as a critical transcriptional regulator essential for oligodendrocyte maturation and CNS myelination.


Subject(s)
Brain/cytology , Gene Expression Regulation , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Transcription Factors/metabolism , Animals , Brain/metabolism , Cell Differentiation , Cells, Cultured , Mice , Neurons/cytology , Neurons/metabolism , Oligodendroglia/cytology
12.
Cell ; 139(2): 380-92, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19818485

ABSTRACT

Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal thrombospondin receptor involved in CNS synapse formation as alpha2delta-1, the receptor for the anti-epileptic and analgesic drug gabapentin. We show that the VWF-A domain of alpha2delta-1 interacts with the epidermal growth factor-like repeats common to all thrombospondins. alpha2delta-1 overexpression increases synaptogenesis in vitro and in vivo and is required postsynaptically for thrombospondin- and astrocyte-induced synapse formation in vitro. Gabapentin antagonizes thrombospondin binding to alpha2delta-1 and powerfully inhibits excitatory synapse formation in vitro and in vivo. These findings identify alpha2delta-1 as a receptor involved in excitatory synapse formation and suggest that gabapentin may function therapeutically by blocking new synapse formation.


Subject(s)
CD36 Antigens/metabolism , Calcium Channels/metabolism , Neurogenesis , Synapses , Amines/pharmacology , Animals , Calcium Channels, L-Type , Cyclohexanecarboxylic Acids/pharmacology , Gabapentin , Mice , Neuronal Plasticity , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Synapses/drug effects , gamma-Aminobutyric Acid/pharmacology
13.
Cell ; 135(4): 596-8, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19013270

ABSTRACT

A major challenge to understanding how cells work together in the central nervous system (CNS) is the heterogeneous cellular composition of the brain. In this issue, Heiman et al. (2008) and Doyle et al. (2008) introduce a new strategy (TRAP) that enables the profiling of translated mRNAs in specific CNS cell populations without the need for purifying cells to homogeneity.


Subject(s)
Central Nervous System/metabolism , Animals , Brain/metabolism , Caenorhabditis elegans , Databases, Genetic , Gene Expression Regulation , Genetic Techniques , Humans , Mice , Mice, Transgenic , Models, Biological , Protein Biosynthesis , RNA, Messenger/metabolism
14.
Nature ; 541(7638): 481-487, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28099414

ABSTRACT

Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.


Subject(s)
Astrocytes/classification , Astrocytes/pathology , Cell Death , Central Nervous System/pathology , Microglia/pathology , Neurons/pathology , Animals , Astrocytes/metabolism , Axotomy , Cell Culture Techniques , Cell Survival , Complement C1q/metabolism , Disease Progression , Humans , Inflammation/pathology , Interleukin-1alpha/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neurodegenerative Diseases/pathology , Oligodendroglia/pathology , Phagocytosis , Phenotype , Rats , Rats, Sprague-Dawley , Synapses/pathology , Toxins, Biological/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Nature ; 549(7673): 523-527, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28959956

ABSTRACT

APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-ß pathology relative to other ApoE isoforms. However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-ß pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independently of amyloid-ß pathology. ApoE4 exerts a 'toxic' gain of function whereas the absence of ApoE is protective.


Subject(s)
Apolipoprotein E4/metabolism , Apolipoprotein E4/toxicity , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/metabolism , Alleles , Animals , Apolipoprotein E4/deficiency , Apolipoprotein E4/genetics , Cell Survival/drug effects , Coculture Techniques , Disease Models, Animal , Disease Progression , Gene Knock-In Techniques , Genotype , Humans , Immunity, Innate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Mice, Transgenic , Microglia/immunology , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Phosphoproteins/analysis , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Tauopathies/genetics , Tumor Necrosis Factor-alpha/metabolism , tau Proteins/genetics
16.
J Neuroinflammation ; 19(1): 105, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35501870

ABSTRACT

BACKGROUND: The important contribution of glia to mechanisms of injury and repair of the nervous system is increasingly recognized. In stark contrast to the central nervous system (CNS), the peripheral nervous system (PNS) has a remarkable capacity for regeneration after injury. Schwann cells are recognized as key contributors to PNS regeneration, but the molecular underpinnings of the Schwann cell response to injury and how they interact with the inflammatory response remain incompletely understood. METHODS: We completed bulk RNA-sequencing of Schwann cells purified acutely using immunopanning from the naïve and injured rodent sciatic nerve at 3, 5, and 7 days post-injury. We used qRT-PCR and in situ hybridization to assess cell purity and probe dataset integrity. Finally, we used bioinformatic analysis to probe Schwann cell-specific injury-induced modulation of cellular pathways. RESULTS: Our data confirm Schwann cell purity and validate RNAseq dataset integrity. Bioinformatic analysis identifies discrete modules of genes that follow distinct patterns of regulation in the 1st days after injury and their corresponding molecular pathways. These findings enable improved differentiation of myeloid and glial components of neuroinflammation after peripheral nerve injury and highlight novel molecular aspects of the Schwann cell injury response such as acute downregulation of the AGE/RAGE pathway and of secreted molecules Sparcl1 and Sema5a. CONCLUSIONS: We provide a helpful resource for further deciphering the Schwann cell injury response and a depth of transcriptional data that can complement the findings of recent single cell sequencing approaches. As more data become available on the response of CNS glia to injury, we anticipate that this dataset will provide a valuable platform for understanding key differences in the PNS and CNS glial responses to injury and for designing approaches to ameliorate CNS regeneration.


Subject(s)
Peripheral Nerve Injuries , Animals , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , RNA/metabolism , Rodentia , Schwann Cells/metabolism , Transcriptome
17.
Proc Natl Acad Sci U S A ; 115(8): E1896-E1905, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29437957

ABSTRACT

The decline of cognitive function occurs with aging, but the mechanisms responsible are unknown. Astrocytes instruct the formation, maturation, and elimination of synapses, and impairment of these functions has been implicated in many diseases. These findings raise the question of whether astrocyte dysfunction could contribute to cognitive decline in aging. We used the Bac-Trap method to perform RNA sequencing of astrocytes from different brain regions across the lifespan of the mouse. We found that astrocytes have region-specific transcriptional identities that change with age in a region-dependent manner. We validated our findings using fluorescence in situ hybridization and quantitative PCR. Detailed analysis of the differentially expressed genes in aging revealed that aged astrocytes take on a reactive phenotype of neuroinflammatory A1-like reactive astrocytes. Hippocampal and striatal astrocytes up-regulated a greater number of reactive astrocyte genes compared with cortical astrocytes. Moreover, aged brains formed many more A1 reactive astrocytes in response to the neuroinflammation inducer lipopolysaccharide. We found that the aging-induced up-regulation of reactive astrocyte genes was significantly reduced in mice lacking the microglial-secreted cytokines (IL-1α, TNF, and C1q) known to induce A1 reactive astrocyte formation, indicating that microglia promote astrocyte activation in aging. Since A1 reactive astrocytes lose the ability to carry out their normal functions, produce complement components, and release a toxic factor which kills neurons and oligodendrocytes, the aging-induced up-regulation of reactive genes by astrocytes could contribute to the cognitive decline in vulnerable brain regions in normal aging and contribute to the greater vulnerability of the aged brain to injury.


Subject(s)
Aging/metabolism , Astrocytes/metabolism , Aging/genetics , Aging/psychology , Animals , Cognition , Female , Gene Expression Profiling , Hippocampus/cytology , Hippocampus/metabolism , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neurons/metabolism , RNA/genetics , RNA/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Annu Rev Neurosci ; 35: 369-89, 2012.
Article in English | MEDLINE | ID: mdl-22715882

ABSTRACT

An unexpected role for the classical complement cascade in the elimination of central nervous system (CNS) synapses has recently been discovered. Complement proteins are localized to developing CNS synapses during periods of active synapse elimination and are required for normal brain wiring. The function of complement proteins in the brain appears analogous to their function in the immune system: clearance of cellular material that has been tagged for elimination. Similarly, synapses tagged with complement proteins may be eliminated by microglial cells expressing complement receptors. In addition, developing astrocytes release signals that induce the expression of complement components in the CNS. In the mature brain, early synapse loss is a hallmark of several neurodegenerative diseases. Complement proteins are profoundly upregulated in many CNS diseases prior to signs of neuron loss, suggesting a reactivation of similar developmental mechanisms of complement-mediated synapse elimination potentially driving disease progression.


Subject(s)
Brain Injuries/physiopathology , Brain/growth & development , Brain/pathology , Complement System Proteins/physiology , Nerve Degeneration/pathology , Neurodegenerative Diseases/physiopathology , Synapses , Animals , Astrocytes/metabolism , Astrocytes/physiology , Brain/metabolism , Brain Injuries/metabolism , Complement System Proteins/biosynthesis , Humans , Microglia/metabolism , Microglia/physiology , Models, Immunological , Models, Neurological , Neural Pathways/growth & development , Neurodegenerative Diseases/metabolism , Synapses/pathology
19.
Nat Methods ; 14(5): 479-482, 2017 May.
Article in English | MEDLINE | ID: mdl-28394337

ABSTRACT

The actin cytoskeleton is essential for many fundamental biological processes, but tools for directly manipulating actin dynamics are limited to cell-permeable drugs that preclude single-cell perturbations. Here we describe DeActs, genetically encoded actin-modifying polypeptides, which effectively induce actin disassembly in eukaryotic cells. We demonstrate that DeActs are universal tools for studying the actin cytoskeleton in single cells in culture, tissues, and multicellular organisms including various neurodevelopmental model systems.


Subject(s)
ADP Ribose Transferases/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Gelsolin/genetics , Peptides/genetics , Recombinant Fusion Proteins/genetics , Virulence Factors/genetics , Actin Cytoskeleton/genetics , Actins/genetics , Animals , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Rats , Transfection
20.
Proc Natl Acad Sci U S A ; 114(38): E8072-E8080, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874532

ABSTRACT

Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.


Subject(s)
Autophagy , Myelin Sheath/metabolism , Peripheral Nerve Injuries/metabolism , Phagocytosis , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , c-Mer Tyrosine Kinase/metabolism , Animals , Disease Models, Animal , Mice , Myelin Sheath/genetics , Myelin Sheath/pathology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/pathology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , c-Mer Tyrosine Kinase/genetics , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL