Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
IEEE Trans Radiat Plasma Med Sci ; 7(7): 704-711, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38524735

ABSTRACT

The HyPET project proposes a hybrid dedicated TOF-PET for prostate imaging, with pixelated detector blocks in the front layer and monolithic blocks in the back layer. In this work, four detector configurations have been experimentally evaluated for the rear detector layer. The detector configuration consists of LYSO monolithic blocks with the same size (25.4 mm × 25.4 mm) but different thicknesses (5, 7.5, 10, and 15 mm) coupled to the same SiPM array. Each detector configuration has been experimentally characterized in terms of time, energy and spatial resolution by scanning the crystal surface using a fan beam in steps of 0.25 mm. Regarding spatial resolution, the interaction position was estimated using a Neural Network technique. All resolutions except energy, which remains nearly constant at 17% for all cases, show better values for the 5 mm detector thickness. We have achieved spatial resolution values of FWHM of 1.02 ± 0.10, 1.19 ± 0.13, 1.53 ± 0.17, 2.33 ± 0.55 mm, for the 5, 7.5, 10, and 15 mm blocks, respectively. The detector time resolution obtained was 275 ± 26, 291 ± 21, 344 ± 48, and 433 ± 45 ps respectively, using the energy weighted average method for the time stamps.

2.
Med Phys ; 48(12): 8010-8023, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34723380

ABSTRACT

PURPOSE: Detectors for positron emission tomography (PET) typically use two types of scintillation crystals, pixelated or monolithic. A variant of these types of scintillators are the so-called semi-monolithic crystals. They consist of a monolithic crystal segmented in one direction in pieces called slabs. These scintillators have the potential to successfully combine the benefits of pixelated and monolithic configurations, providing good timing and spatial resolutions as well as the capacity to decode the depth of interaction (DOI) information. In this work, the timing performance of a detector based on semi-monolithic crystals was studied in depth. The energy response was also evaluated. METHODS: The semi-monolithic detector consists of 1 × 24 LYSO slabs of 25.4 × 12 × 0.95 mm3 each. The bottom surface of the slabs is coupled to an array of 8 × 8 silicon photomultipliers (SiPMs) of 3 × 3 mm2 active area, 50 µm cell size and 3.2 mm pitch. The 64 output signals were independently readout by the TOFPET2 ASIC. In order to achieve the best coincidence time resolution (CTR), four different time walk corrections were tested. Additional work investigated the best method of combining the timestamps belonging to the same event. RESULTS: The resolvability of the slabs in the measured flood maps improves with the thickness of a light guide placed in between the scintillators and photosensors. The energy resolution does not change significantly with values as good as 13.7%. Regarding the CTR, values of 335.8, 363, 369.8, and 402.5 ps have been obtained for the whole detector for no light guide, 0.5, 1.0, and 1.5 mm thickness light guide cases, respectively. These values further improve to 276.1, 302.6, 305.6 and 336.2 ps, respectively, when energy-weighted averaging of timestamps is applied. CONCLUSIONS: We have shown both an excellent timing resolution and good energy resolution for a PET detector based on semi-monolithic crystals. The use of light guides of different thicknesses does not significantly affect the energy resolution of the whole detector, but the timing capabilities slightly worsen with the increasing thickness of the light guide.


Subject(s)
Positron-Emission Tomography , Scintillation Counting , Physical Phenomena
3.
Sci Rep ; 11(1): 9325, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927324

ABSTRACT

The applicability extent of hadron therapy for tumor treatment is currently limited by the lack of reliable online monitoring techniques. An active topic of investigation is the research of monitoring systems based on the detection of secondary radiation produced during treatment. MACACO, a multi-layer Compton camera based on LaBr3 scintillator crystals and SiPMs, is being developed at IFIC-Valencia for this purpose. This work reports the results obtained from measurements of a 150 MeV proton beam impinging on a PMMA target. A neural network trained on Monte Carlo simulations is used for event selection, increasing the signal to background ratio before image reconstruction. Images of the measured prompt gamma distributions are reconstructed by means of a spectral reconstruction code, through which the 4.439 MeV spectral line is resolved. Images of the emission distribution at this energy are reconstructed, allowing calculation of the distal fall-off and identification of target displacements of 3 mm.

4.
EJNMMI Phys ; 7(1): 38, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32504230

ABSTRACT

BACKGROUND: Prostate cancer (PCa) represents one of the most common types of cancers facing the male population. Nowadays, to confirm PCa, systematic or multiparametric MRI-targeted transrectal or transperineal biopsies of the prostate are required. However, due to the lack of an accurate imaging technique capable to precisely locate cancerous cells in the prostate, ultrasound biopsies sample random parts of the prostate and, therefore, it is possible to miss regions where those cancerous cells are present. In spite of the improvement with multiparametric MRI, the low reproducibility of its reading undermines the specificity of the method. Recent development of prostate-specific radiotracers has grown the interest on using positron emission tomography (PET) scanners for this purpose, but technological improvements are still required (current scanners have resolutions in the range of 4-5 mm). RESULTS: The main goal of this work is to improve state-of-the-art PCa imaging and diagnosis. We have focused our efforts on the design of a novel prostate-dedicated PET scanner, named ProsPET. This system has small scanner dimensions defined by a ring of just 41 cm inner diameter. In this work, we report the design, implementation, and evaluation (both through simulations and real data) of the ProsPET scanner. We have been able to achieve < 2 mm resolution in reconstructed images and high sensitivity. In addition, we have included a comparison with the Philips Gemini-TF scanner, which is used for routine imaging of PCa patients. The ProsPET exhibits better contrast, especially for rod sizes as small as 4.5 mm in diameter. Finally, we also show the first reconstructed image of a PCa patient acquired with the ProsPET. CONCLUSIONS: We have designed and built a prostate specific PET system, with a small footprint and improved spatial resolution when compared to conventional whole-body PET scanners. The gamma ray impact within each detector block includes accurate DOI determination, correcting for the parallax error. The potential role of combined organ-dedicated prostate-specific membrane antigen (PSMA) PET and ultrasound devices, as a prebiopsy diagnostic tool, could be used to guide sampling of the most aggressive sites in the prostate.

5.
Phys Med Biol ; 64(3): 035015, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30537693

ABSTRACT

Sensitivity and spatial resolution are the main parameters to maximize in the performance of a PET scanner. For this purpose, detectors consisting of a combination of continuous crystals optically coupled to segmented photodetectors have been employed. With the use of continuous crystals the sensitivity is increased with respect to the pixelated crystals. In addition, spatial resolution is no longer limited to the crystal size. The main drawback is the difficulty in determining the interaction position. In this work, we present the characterization of the performance of a full ring based on cuboid continuous crystals coupled to SiPMs. To this end, we have employed the simulations developed in a previous work for our experimental detector head. Sensitivity could be further enhanced by using tapered crystals. This enhancement is obtained by increasing the solid angle coverage, reducing the wedge-shaped gaps between contiguous detectors. The performance of the scanners based on both crystal geometries was characterized following NEMA NU 4-2008 standardized protocol in order to compare them. An average sensitivity gain over the entire axial field of view of 13.63% has been obtained with tapered geometry while similar performance of the spatial resolution has been proven with both scanners. The activity at which NECR and true peak occur is smaller and the peak value is greater for tapered crystals than for cuboid crystals. Moreover, a higher degree of homogeneity was obtained in the sensitivity map due to the tighter packing of the crystals, which reduces the gaps and results in a better recovery of homogeneous regions than for the cuboid configuration. Some of the results obtained, such as spatial resolution, depend on the interaction position estimation and may vary if other method is employed.


Subject(s)
Models, Theoretical , Positron-Emission Tomography/instrumentation , Signal-To-Noise Ratio , Equipment Design
6.
Phys Med Biol ; 63(13): 135004, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29847316

ABSTRACT

Given the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype. In this work, we have derived an analytical model that allows us to calculate a detailed sensitivity matrix, which has been compared to other sensitivity models in the literature. Specifically, the proposed model describes the probability of measuring a useful event in a two-plane Compton camera, including the most relevant physical processes involved. The model has been used to obtain an expression for the system and sensitivity matrices for iterative image reconstruction. These matrices have been validated taking Monte Carlo simulations as a reference. In order to study the impact of the sensitivity, images reconstructed with our sensitivity model and with other models have been compared. Images have been reconstructed from several simulated sources, including point-like sources and extended distributions of activity, and also from experimental data measured with 22Na sources. Results show that our sensitivity model is the best suited for our prototype. Although other models in the literature perform successfully in many scenarios, they are not applicable in all the geometrical configurations of interest for our system. In general, our model allows to effectively recover the intensity of point-like sources at different positions in the FoV and to reconstruct regions of homogeneous activity with minimal variance. Moreover, it can be employed for all Compton camera configurations, including those with low angular coverage over the scatterer.


Subject(s)
Limit of Detection , Radionuclide Imaging/instrumentation , Algorithms , Image Processing, Computer-Assisted , Monte Carlo Method , Photons , Probability , Scattering, Radiation
7.
Phys Med Biol ; 62(18): 7321-7341, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28718772

ABSTRACT

Compton imaging devices have been proposed and studied for a wide range of applications. We have developed a Compton camera prototype which can be operated with two or three detector layers based on monolithic lanthanum bromide ([Formula: see text]) crystals coupled to silicon photomultipliers (SiPMs), to be used for proton range verification in hadron therapy. In this work, we present the results obtained with our prototype in laboratory tests with radioactive sources and in simulation studies. Images of a [Formula: see text]Na and an [Formula: see text]Y radioactive sources have been successfully reconstructed. The full width half maximum of the reconstructed images is below 4 mm for a [Formula: see text]Na source at a distance of 5 cm.


Subject(s)
Diagnostic Imaging/instrumentation , Gamma Rays , Image Processing, Computer-Assisted/methods , Protons , Radiation Monitoring/instrumentation , Algorithms , Computer Simulation , Humans , Silicon/chemistry
8.
Phys Med Biol ; 61(10): 3914-34, 2016 05 21.
Article in English | MEDLINE | ID: mdl-27119737

ABSTRACT

The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a [Formula: see text] mm(3) LYSO crystal coupled to an [Formula: see text]-pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is ∼0.9 mm FWHM and ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is ∼5.3 mm for 5 mm thick crystal and ∼9.6 mm for 10 mm thick crystal.


Subject(s)
Positron-Emission Tomography/instrumentation , Silicon/chemistry , Amplifiers, Electronic/standards , Monte Carlo Method , Positron-Emission Tomography/methods , Sensitivity and Specificity
9.
Front Oncol ; 6: 14, 2016.
Article in English | MEDLINE | ID: mdl-26870693

ABSTRACT

A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomultiplier arrays. (22)Na sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.

SELECTION OF CITATIONS
SEARCH DETAIL