Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30580964

ABSTRACT

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Subject(s)
Mevalonic Acid/metabolism , Tumor Suppressor Protein p53/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Cell Line , Cholesterol/metabolism , Female , Genes, Tumor Suppressor , HCT116 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Promoter Regions, Genetic , Sterol Regulatory Element Binding Protein 2/metabolism , Terpenes/metabolism
2.
Nature ; 609(7926): 408-415, 2022 09.
Article in English | MEDLINE | ID: mdl-35831509

ABSTRACT

Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-richĀ repeat regionĀ and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formationĀ is initiallyĀ mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .


Subject(s)
Cryoelectron Microscopy , Intracellular Signaling Peptides and Proteins , Multiprotein Complexes , Protein Phosphatase 1 , ras Proteins , Amino Acid Motifs , Binding Sites , Guanosine Triphosphate/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation, Missense , Phosphorylation , Protein Binding , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/ultrastructure , Protein Stability , raf Kinases , ras Proteins/chemistry , ras Proteins/metabolism , ras Proteins/ultrastructure
3.
Nat Chem Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965384

ABSTRACT

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.

4.
Cell ; 142(3): 358-60, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20691894

ABSTRACT

The tumor suppressor protein p53 coordinates the cellular response to stress through regulation of gene expression. Now, Huarte et al. (2010) identify a long intergenic noncoding RNA as a new player in p53-mediated repression of genes involved in apoptosis.

5.
Mol Cell ; 48(5): 799-810, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23102701

ABSTRACT

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Tumor Suppressor Protein p53/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , 3' Untranslated Regions , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Binding Sites , Camptothecin/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Knockout , Nuclear Pore Complex Proteins/genetics , RNA Interference , RNA Stability , Time Factors , Transfection , Tumor Suppressor Protein p53/genetics , ATP-Binding Cassette Sub-Family B Member 4
6.
EMBO J ; 34(13): 1773-85, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25979827

ABSTRACT

Lat1 (SLC7A5) is an amino acid transporter often required for tumor cell import of essential amino acids (AA) including Methionine (Met). Met is the obligate precursor of S-adenosylmethionine (SAM), the methyl donor utilized by all methyltransferases including the polycomb repressor complex (PRC2)-specific EZH2. Cell populations sorted for surface Lat1 exhibit activated EZH2, enrichment for Met-cycle intermediates, and aggressive tumor growth in mice. In agreement, EZH2 and Lat1 expression are co-regulated in models of cancer cell differentiation and co-expression is observed at the invasive front of human lung tumors. EZH2 knockdown or small-molecule inhibition leads to de-repression of RXRα resulting in reduced Lat1 expression. Our results describe a Lat1-EZH2 positive feedback loop illustrated by AA depletion or Lat1 knockdown resulting in SAM reduction and concomitant reduction in EZH2 activity. shRNA-mediated knockdown of Lat1 results in tumor growth inhibition and points to Lat1 as a potential therapeutic target.


Subject(s)
Amino Acids/metabolism , Epigenesis, Genetic/physiology , Large Neutral Amino Acid-Transporter 1/physiology , Polycomb Repressive Complex 2/physiology , Animals , Biological Transport/genetics , Cell Proliferation/genetics , Enhancer of Zeste Homolog 2 Protein , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured
7.
J Biol Chem ; 287(4): 2509-19, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22110125

ABSTRACT

p53 is a tumor suppressor protein that acts as a transcription factor to regulate (either positively or negatively) a plethora of downstream target genes. Although its ability to induce protein coding genes is well documented, recent studies have implicated p53 in the regulation of non-coding RNAs, including both microRNAs (e.g. miR-34a) and long non-coding RNAs (e.g. lincRNA-p21). We have identified the non-protein coding locus PVT1 as a p53-inducible target gene. PVT1, a very large (>300 kb) locus located downstream of c-myc on chromosome 8q24, produces a wide variety of spliced non-coding RNAs as well as a cluster of six annotated microRNAs: miR-1204, miR-1205, miR-1206, miR-1207-5p, miR-1207-3p, and miR-1208. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), and luciferase assays reveal that p53 binds and activates a canonical response element within the vicinity of miR-1204. Consistently, we demonstrate the p53-dependent induction of endogenous PVT1 transcripts and consequent up-regulation of mature miR-1204. Finally, we have shown that ectopic expression of miR-1204 leads to increased p53 levels and causes cell death in a partially p53-dependent manner.


Subject(s)
Chromosomes, Human, Pair 8/metabolism , MicroRNAs/biosynthesis , Proteins/metabolism , Response Elements/physiology , Transcription, Genetic/physiology , Tumor Suppressor Protein p53/metabolism , Cell Death/physiology , Cell Line, Tumor , Chromosomes, Human, Pair 8/genetics , Genetic Loci/physiology , Humans , MicroRNAs/genetics , Proteins/genetics , RNA Processing, Post-Transcriptional/physiology , RNA, Long Noncoding , Tumor Suppressor Protein p53/genetics
8.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37961297

ABSTRACT

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.

9.
Proc Natl Acad Sci U S A ; 105(6): 1937-42, 2008 Feb 12.
Article in English | MEDLINE | ID: mdl-18238895

ABSTRACT

When treated with some DNA-damaging agents, human tumor-derived H1299 cells expressing inducible versions of wild-type or mutant p53 with inactive transactivation domain I (p53(Q22/S23)) undergo apoptosis as evidenced by cytochrome c release, nuclear fragmentation, and sub-G1 DNA content. Apoptosis induced by p53(Q22/S23) is relatively slow, however, and key downstream effector caspases are not activated. Nevertheless, with either version of p53, caspase 2 activation is required for release of cytochrome c and cell death. Remarkably, although p53(Q22/S23) is known to be defective in transcriptional activation of numerous p53 target genes, it can induce expression of proapoptotic targets including PIDD and AIP1 at least to the same extent as wild-type p53. Furthermore, RNAi silencing of PIDD, previously shown to be required for caspase 2 activation, suppresses apoptosis by both wild-type p53 and p53(Q22/S23). Thus, the initial stage of DNA damage-facilitated, p53-mediated apoptosis occurs by a PIDD- and caspase 2-dependent mechanism, and p53's full transcriptional regulatory functions may be required only for events that are downstream of cytochrome c release.


Subject(s)
Apoptosis/physiology , Carrier Proteins/physiology , Caspase 2/metabolism , Cysteine Endopeptidases/metabolism , Tumor Suppressor Protein p53/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cytochromes c/metabolism , Death Domain Receptor Signaling Adaptor Proteins , Humans , Mitochondria/enzymology , Transcription, Genetic , Tumor Suppressor Protein p53/genetics
10.
J Med Chem ; 63(10): 5201-5211, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32282207

ABSTRACT

Aerobic glycolysis, originally identified by Warburg as a hallmark of cancer, has recently been implicated in immune cell activation and growth. Glucose, the starting material for glycolysis, is transported through the cellular membrane by a family of glucose transporters (GLUTs). Therefore, targeting glucose transporters to regulate aerobic glycolysis is an attractive approach to identify potential therapeutic agents for cancers and autoimmune diseases. Herein, we describe the discovery and optimization of a class of potent, orally bioavailable inhibitors of glucose transporters, targeting both GLUT1 and GLUT3.


Subject(s)
Drug Discovery/methods , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Caco-2 Cells , Dose-Response Relationship, Drug , Drug Discovery/trends , Glycolysis/drug effects , Glycolysis/physiology , Humans , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats
11.
Oncotarget ; 6(5): 2928-38, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25671303

ABSTRACT

In addition to genetic alterations, cancer cells are characterized by myriad epigenetic changes. EZH2 is a histone methyltransferase that is over-expressed and mutated in cancer. The EZH2 gain-of-function (GOF) mutations first identified in lymphomas have recently been reported in melanoma (~2%) but remain uncharacterized. We expressed multiple EZH2 GOF mutations in the A375 metastatic skin melanoma cell line and observed both increased H3K27me3 and dramatic changes in 3D culture morphology. In these cells, prominent morphological changes were accompanied by a decrease in cell contractility and an increase in collective cell migration. At the molecular level, we observed significant alteration of the axonal guidance pathway, a pathway intricately involved in the regulation of cell shape and motility. Furthermore, the aggressive 3D morphology of EZH2 GOF-expressing melanoma cells (both endogenous and ectopic) was attenuated by EZH2 catalytic inhibition. Finally, A375 cells expressing exogenous EZH2 GOF mutants formed larger tumors than control cells in mouse xenograft studies. This study not only demonstrates the first functional characterization of EZH2 GOF mutants in non-hematopoietic cells, but also provides a rationale for EZH2 catalytic inhibition in melanoma.


Subject(s)
Cell Movement , Cell Proliferation , Cell Shape , Epigenesis, Genetic , Melanoma/genetics , Mutation , Polycomb Repressive Complex 2/genetics , Skin Neoplasms/genetics , Animals , Cell Line , Cell Movement/drug effects , Cell Shape/drug effects , DNA Methylation , Enhancer of Zeste Homolog 2 Protein , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/pathology , Mice, Nude , Molecular Targeted Therapy , Neoplasm Invasiveness , Polycomb Repressive Complex 2/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/enzymology , Skin Neoplasms/pathology , Tumor Burden , Xenograft Model Antitumor Assays
13.
Cell Cycle ; 7(9): 1133-8, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18418048

ABSTRACT

Upon treatment with some DNA damaging agents, human H1299 tumor-derived cells expressing inducible versions of wild-type or mutant p53 with inactive transactivation domain I (p53(Q22/S23)) undergo apoptosis. In cells expressing either version of p53, caspase 2 activation is required for release of cytochrome c and cell death. Furthermore, silencing of PIDD (a factor previously shown to be required for caspase 2 activation) by siRNA suppresses apoptosis by both wild-type p53 and p53(Q22/S23). Despite the finding that caspase 2 is essential for DNA damage-facilitated, p53-mediated apoptosis, induction of wild-type p53 (with or without DNA damage) resulted in a reduction of caspase 2 mRNA and protein levels. In this study we sought to provide a mechanism for the negative regulation of caspase 2 by p53 as well as provide insight as to why p53 may repress a key mediator of p53-dependent apoptosis. Mechanistically, we show that DNA binding and/or transactivation domains of p53 are crucial for mediating transrepression. Further, expression of p21 (in p53-null cells inducibly expressing p21) is sufficient to mediate repression of caspase 2. Deletion of p21 or E2F-1 not only abrogated repression of caspase 2, but also stimulated the expression of caspase 2 above basal levels, implicating the requirement for an intact p21/Rb/E2F pathway in the downregulation of caspase 2. As this p53/p21-dependent repression of caspase 2 can occur in the absence of DNA damage, caspase 2 repression does not simply seem to be a consequence of the apoptotic process. Downregulation of caspase 2 levels by p53 may help to determine cell fate by preventing cell death when unnecessary.


Subject(s)
Apoptosis/physiology , Caspase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cysteine Endopeptidases/metabolism , Down-Regulation/physiology , Tumor Suppressor Protein p53/metabolism , Binding Sites/physiology , Caspase 2/genetics , Cell Death/physiology , Cell Line , Cell Lineage/physiology , Cysteine Endopeptidases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Humans , Protein Structure, Tertiary/physiology , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Tumor Suppressor Protein p53/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL