Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(6): 1184-1205, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38744284

ABSTRACT

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Subject(s)
Anoctamins , Mutation, Missense , Humans , Anoctamins/genetics , Anoctamins/metabolism , Mutation, Missense/genetics , Male , Female , Epilepsy/genetics , Child , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Genetic Association Studies , Pedigree , Calcium/metabolism , Genes, Dominant , Child, Preschool , HEK293 Cells , Adolescent
2.
Mol Genet Metab ; 140(4): 107733, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979236

ABSTRACT

BACKGROUND: Systemic primary carnitine deficiency (PCD) is characterized by cardiomyopathy and arrhythmia. Without carnitine supplementation, progression is usually towards fatal cardiac decompensation. While the cardiomyopathy is most likely secondary to energy deficiency, the mechanism of arrhythmia is unclear, and may be related to a short QT interval. OBJECTIVE: We aim to describe rhythmic manifestations at diagnosis and with carnitine supplementation. METHODS: French patients diagnosed for PCD were retrospectively included. Clinical and para clinical data at diagnosis and during follow-up were collected. Electrocardiograms with QT interval measurements were blinded reviewed by two paediatric cardiologists. RESULTS: Nineteen patients (median age at diagnosis 2.3 years (extremes 0.3-28.9)) followed in 8 French centres were included. At diagnosis, 21% of patients (4/19) had arrhythmia (2 ventricular fibrillations, 1 ventricular tachycardia and 1 sudden death), and 84% (16/19) had cardiomyopathy. Six electrocardiograms before treatment out of 11 available displayed a short QT (QTc < 340 ms). Median corrected QTc after carnitine supplementation was 404 ms (extremes 341-447) versus 350 ms (extremes 282-421) before treatment (p < 0.001). The whole QTc was prolonged, and no patient reached the criterion of short QT syndrome with carnitine supplementation. Three patients died, probably from rhythmic cause without carnitine supplementation (two extra-hospital sudden deaths and one non-recoverable rhythmic storm before carnitine supplementation), whereas no rhythmic complication occurred in patients with carnitine supplementation. CONCLUSION: PCD is associated with shortening of the QT interval inducing severe arrhythmia. A potential explanation would be a toxic effect of accumulated fatty acid and metabolites on ionic channels embedded in the cell membrane. Carnitine supplementation normalizes the QTc and prevents arrhythmia. Newborn screening of primary carnitine deficiency would prevent avoidable deaths.


Subject(s)
Cardiomyopathies , Long QT Syndrome , Infant, Newborn , Child , Humans , Child, Preschool , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Retrospective Studies , Arrhythmias, Cardiac/complications , Cardiomyopathies/complications , Carnitine/metabolism , Electrocardiography/adverse effects
3.
J Pediatr ; 254: 39-47.e4, 2023 03.
Article in English | MEDLINE | ID: mdl-36265570

ABSTRACT

OBJECTIVE: The objective of this study was to compare the quality of life (QoL) for parents of children with inborn errors of metabolism (IEMs) requiring a restricted diet with French population norms and investigate parental QoL determinants. STUDY DESIGN: This cross-sectional study included mothers and/or fathers of children < 18 years of age affected by IEMs requiring a restricted diet (except phenylketonuria) from January 2015 to December 2017. Parents' QoL was assessed using the World Health Organization Quality of Life BREF questionnaire and compared with age- and sex-matched reference values from the French general population. Linear mixed models were used to examine the effects of demographic, socioeconomic, disease-related, and psychocognitive factors on parental QoL, according to a 2-level regression model considering individuals (parents) nested within families. RESULTS: Of the 1156 parents invited to participate, 785 (68%) were included. Compared with the general population, parents of children with IEMs requiring a restricted diet reported a lower QoL in physical and social relationship domains but a higher QoL in the psychological domain. In the multivariate analysis, characteristics associated with poorer parental QoL included both parent-related factors (being a father, older age, more educated parent, nonworking parent, greater anxiety, seeking more social support, and using less positive thinking and problem-solving coping strategies) and family-related factors (disease complications, increased number of hospital medical providers, child's younger age, single-parent family, and lower family material wealth). CONCLUSION: Parents of children with IEMs requiring a restricted diet reported poorer QoL in physical and social relationship domains than population norms. Psychocognitive factors, beyond disease-specific and family-related characteristics, were the most important determinants influencing parental QoL and may represent essential aspects for interventions. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT02552784.


Subject(s)
Metabolism, Inborn Errors , Quality of Life , Female , Humans , Child , Quality of Life/psychology , Multilevel Analysis , Cross-Sectional Studies , Parents/psychology , Surveys and Questionnaires , Diet
4.
Eur J Neurol ; 30(9): 2828-2837, 2023 09.
Article in English | MEDLINE | ID: mdl-37235686

ABSTRACT

BACKGROUND: Classical infantile-onset Pompe disease (IOPD) is the most severe form of Pompe disease. Enzyme replacement therapy (ERT) has significantly increased survival but only a few studies have reported long-term outcomes. METHODS: We retrospectively analyzed the outcomes of classical IOPD patients diagnosed in France between 2004 and 2020. RESULTS: Sixty-four patients were identified. At diagnosis (median age 4 months) all patients had cardiomyopathy and most had severe hypotonia (57 of 62 patients, 92%). ERT was initiated in 50 (78%) patients and stopped later due to being ineffective in 10 (21%). Thirty-seven (58%) patients died during follow-up, including all untreated and discontinued ERT patients, and 13 additional patients. Mortality was higher during the first 3 years of life and after the age of 12 years. Persistence of cardiomyopathy during follow-up and/or the presence of heart failure were highly associated with an increased risk of death. In contrast, cross-reactive immunologic material (CRIM)-negative status (n = 16, 26%) was unrelated to increased mortality, presumably because immunomodulation protocols prevent the emergence of high antibody titers to ERT. Besides survival, decreased ERT efficacy appeared after the age of 6 years, with a progressive decline in motor and pulmonary functions for most survivors. CONCLUSIONS: This study reports the long-term follow-up of one of the largest cohorts of classical IOPD patients and demonstrates high long-term mortality and morbidity rates with a secondary decline in muscular and respiratory functions. This decreased efficacy seems to be multifactorial, highlighting the importance of developing new therapeutic approaches targeting various aspects of pathogenesis.


Subject(s)
Cardiomyopathies , Glycogen Storage Disease Type II , Humans , Child , Infant , Glycogen Storage Disease Type II/drug therapy , Follow-Up Studies , Retrospective Studies , Enzyme Replacement Therapy/adverse effects , Enzyme Replacement Therapy/methods
5.
Genet Med ; 24(7): 1583-1591, 2022 07.
Article in English | MEDLINE | ID: mdl-35499524

ABSTRACT

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Phosphoproteins , Transcription Factors , Gene Expression Regulation , Heterozygote , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phosphoproteins/genetics , Transcription Factors/genetics
6.
Genet Med ; 24(1): 179-191, 2022 01.
Article in English | MEDLINE | ID: mdl-34906456

ABSTRACT

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Subject(s)
Intellectual Disability , Language Development Disorders , Musculoskeletal Abnormalities , Haploinsufficiency , Humans , Intellectual Disability/diagnosis , Language Development Disorders/genetics , Musculoskeletal Abnormalities/genetics , Phenotype
7.
J Pediatr ; 242: 192-200.e3, 2022 03.
Article in English | MEDLINE | ID: mdl-34788681

ABSTRACT

OBJECTIVE: To investigate the determinants of quality of life (QoL) in children with inborn errors of metabolism with restricted diet (IEMRDs) using a single theory-based multidimensional model. STUDY DESIGN: In this multicenter cross-sectional study, data from children aged 8-17 years with IEMRDs (except phenylketonuria) and their parents were collected from January 2015 to December 2017. Measurements included a child's self-reported QoL, self-rated behavioral problems and anxiety, and parental anxiety. Based on hypotheses from a literature-built theoretical model linking demographic, clinical, family environment, and psychosocial characteristics to QoL either directly or indirectly, associations of these factors with a child's self-rated QoL were examined using a structural equation modeling approach. RESULTS: A total of 312 children (mean [SD] age, 12.2 [2.6] years; 51% boys [n = 160]) were included. Higher levels of trait anxiety and behavioral problems in children were the most important factors associated with poorer QoL (standardized path coefficients, -0.71 and -0.23, respectively). In addition, higher parent trait anxiety, younger age at diagnosis, and a disease requiring an emergency diet were associated with poorer QoL in these children. The final model fit the data closely according to conventional goodness-of-fit statistics and explained 86% of the QoL variance. CONCLUSIONS: Psychosocial factors appear to be major determinants of QoL impairment in children with IEMRDs. These factors should be addressed in clinical practice as part of the global treatment plan for a child with IEMRD. Future studies based on a longitudinal design should consider coping strategies when exploring potential predictive factors of QoL.


Subject(s)
Metabolism, Inborn Errors , Quality of Life , Child , Cross-Sectional Studies , Female , Humans , Male , Parents/psychology , Quality of Life/psychology , Surveys and Questionnaires
8.
Mov Disord ; 37(6): 1294-1298, 2022 06.
Article in English | MEDLINE | ID: mdl-35384065

ABSTRACT

BACKGROUND: ADCY5-related dyskinesia is characterized by early-onset movement disorders. There is currently no validated treatment, but anecdotal clinical reports and biological hypotheses suggest efficacy of caffeine. OBJECTIVE: The aim is to obtain further insight into the efficacy and safety of caffeine in patients with ADCY5-related dyskinesia. METHODS: A retrospective study was conducted worldwide in 30 patients with a proven ADCY5 mutation who had tried or were taking caffeine for dyskinesia. Disease characteristics and treatment responses were assessed through a questionnaire. RESULTS: Caffeine was overall well tolerated, even in children, and 87% of patients reported a clear improvement. Caffeine reduced the frequency and duration of paroxysmal movement disorders but also improved baseline movement disorders and some other motor and nonmotor features, with consistent quality-of-life improvement. Three patients reported worsening. CONCLUSION: Our findings suggest that caffeine should be considered as a first-line therapeutic option in ADCY5-related dyskinesia. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesias , Movement Disorders , Adenylyl Cyclases/genetics , Caffeine/therapeutic use , Child , Dyskinesias/etiology , Dyskinesias/genetics , Humans , Movement Disorders/genetics , Retrospective Studies
9.
J Med Genet ; 58(10): 712-716, 2021 10.
Article in English | MEDLINE | ID: mdl-32820033

ABSTRACT

OBJECTIVE: To determine the potential disease association between variants in LMBRD2 and complex multisystem neurological and developmental delay phenotypes. METHODS: Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated individuals with overlapping features. Exome sequencing or genome sequencing was performed on all individuals, and the cohort was assembled through GeneMatcher. RESULTS: LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane protein with no known disease association, although two paralogues are involved in developmental and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, microcephaly and seizures. We identified five unique variants and two recurrent variants, c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants are absent from population allele frequency databases, and most are predicted to be deleterious by multiple in silico damage-prediction algorithms. CONCLUSION: These findings indicate that rare de novo variants in LMBRD2 can lead to a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of individuals harbouring LMBRD2 variants may lead to a better understanding of the function of this ubiquitously expressed gene.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Motor Skills Disorders/diagnosis , Motor Skills Disorders/genetics , Mutation, Missense , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , Nucleocytoplasmic Transport Proteins/genetics , Alleles , Amino Acid Substitution , Cohort Studies , Genetic Predisposition to Disease , Genotype , Humans , Phenotype
10.
Hum Genet ; 140(9): 1395-1401, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34313816

ABSTRACT

The purpose of this study is to describe a Mendelian disorder of DNA damage repair. Phenotypic delineation of two families, one new and one previously published, with overlapping dysmorphic and neurodevelopmental features was undertaken. Functional characterization of DNA damage repair in fibroblasts obtained from the index individuals in each of the two families was pursued. We present new evidence of a distinct disorder caused by biallelic truncating variants in ZNF668 comprising microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism. DNA damage repair defect was observed in fibroblasts of affected individuals. ZNF668 deficiency in humans results in a recognizable autosomal recessive disorder, which we propose to name ZNF668-related ZMAND (ZNF668-related brain malformation, microcephaly, abnormal growth, neurodevelopmental delay, and dysmorphism). Our results add to the growing list of Mendelian disorders of the DNA damage repair machinery.


Subject(s)
Abnormalities, Multiple/genetics , DNA Damage , Genes, Recessive , Homozygote , Tumor Suppressor Proteins/deficiency , Abnormalities, Multiple/pathology , Child , Humans , Male
11.
J Clin Immunol ; 41(3): 603-609, 2021 04.
Article in English | MEDLINE | ID: mdl-33411153

ABSTRACT

Whilst upregulation of type I interferon (IFN) signaling is common across the type I interferonopathies (T1Is), central nervous system (CNS) involvement varies between these disorders, the basis of which remains unclear. We collected cerebrospinal fluid (CSF) and serum from patients with Aicardi-Goutières syndrome (AGS), STING-associated vasculopathy with onset in infancy (SAVI), presumed monogenic T1Is (pT1I), childhood systemic lupus erythematosus with neuropsychiatric features (nSLE), non-IFN-related autoinflammation (AI) and non-inflammatory hydrocephalus (as controls). We measured IFN-alpha protein using digital ELISA. Eighty-two and 63 measurements were recorded respectively in CSF and serum of 42 patients and 6 controls. In an intergroup comparison (taking one sample per individual), median CSF IFN-alpha levels were elevated in AGS, SAVI, pT1I, and nSLE compared to AI and controls, with levels highest in AGS compared to all other groups. In AGS, CSF IFN-alpha concentrations were higher than in paired serum samples. In contrast, serum IFN was consistently higher compared to CSF levels in SAVI, pT1I, and nSLE. Whilst IFN-alpha is present in the CSF and serum of all IFN-related diseases studied here, our data suggest the primary sites of IFN production in the monogenic T1I AGS and SAVI are, respectively, the CNS and the periphery. These results inform the diagnosis of, and future therapeutic approaches to, monogenic and multifactorial T1Is.


Subject(s)
Disease Susceptibility , Gene Expression Regulation , Interferon Type I/genetics , Interferon-alpha/genetics , Organ Specificity/genetics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Interferon Type I/cerebrospinal fluid , Interferon Type I/metabolism , Interferon-alpha/cerebrospinal fluid , Interferon-alpha/metabolism , Male , Mutation , Phenotype , Retrospective Studies , Young Adult
12.
Genet Med ; 23(9): 1769-1778, 2021 09.
Article in English | MEDLINE | ID: mdl-34040194

ABSTRACT

PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.


Subject(s)
Genome, Mitochondrial , Mitochondrial Diseases , Adult , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Humans , Mitochondria/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Sequence Deletion/genetics
13.
Genet Med ; 23(11): 2150-2159, 2021 11.
Article in English | MEDLINE | ID: mdl-34345024

ABSTRACT

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Subject(s)
Intellectual Disability , Microcephaly , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mice , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Dyrk Kinases
14.
Genet Med ; 23(4): 740-750, 2021 04.
Article in English | MEDLINE | ID: mdl-33239752

ABSTRACT

PURPOSE: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.


Subject(s)
Aldehyde Oxidoreductases/genetics , Ethers , Lipids , Spastic Paraplegia, Hereditary/genetics , Humans , Phenotype
15.
Clin Genet ; 100(5): 628-633, 2021 11.
Article in English | MEDLINE | ID: mdl-34415064

ABSTRACT

Biallelic variants in PUS3 have recently been recognized as a rare cause of neurodevelopmental disorders. Pseudouridine synthase-3 encoded by PUS3 is an enzyme important for modification of various RNAs, including transfer RNA (tRNA). Here we present the clinical and genetic features of 21 individuals with biallelic PUS3 variants: seven new and 14 previously reported individuals, where clinical features of two were updated. The clinical and genetic information were collected through collaborations or by literature search. All individuals were characterized by the local clinicians and the gene variants were identified by next generation sequencing (NGS) based methodologies. The clinical picture was dominated by global developmental delay, epilepsy, hypotonia and microcephaly. Gray sclera, which has previously been suggested to be a characteristic feature of PUS3-associated phenotypes, was reported in only seven individuals. The patients had some dysmorphic facial features, but a recognizable gestalt was not observed. In conclusion, homozygous and compound heterozygous PUS3 variants lead to a rare neurodevelopmental disorder. Further functional studies are necessary to understand involvement of PUS3 and tRNA biogenesis in normal and abnormal brain development.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Intramolecular Transferases/genetics , Mutation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Age of Onset , Alleles , Amino Acid Substitution , Computational Biology , Databases, Genetic , Facies , Genetic Association Studies/methods , Homozygote , Humans , Pedigree , Exome Sequencing
16.
J Inherit Metab Dis ; 44(2): 415-425, 2021 03.
Article in English | MEDLINE | ID: mdl-32929747

ABSTRACT

TANGO2 disease is a severe inherited disorder associating multiple symptoms such as metabolic crises, encephalopathy, cardiac arrhythmias, and hypothyroidism. The mechanism of action of TANGO2 is currently unknown. Here, we describe a cohort of 20 French patients bearing mutations in the TANGO2 gene. We found that the main clinical presentation was the association of neurodevelopmental delay (n = 17), acute metabolic crises (n = 17) and hypothyroidism (n = 12), with a large intrafamilial clinical variability. Metabolic crises included rhabdomyolysis (15/17), neurological symptoms (14/17), and cardiac features (12/17; long QT (n = 10), Brugada pattern (n = 2), cardiac arrhythmia (n = 6)) that required intensive care. We show previously uncharacterized triggers of metabolic crises in TANGO2 patients, such as some anesthetics and possibly l-carnitine. Unexpectedly, plasma acylcarnitines, plasma FGF-21, muscle histology, and mitochondrial spectrometry were mostly normal. Moreover, in patients' primary myoblasts, palmitate and glutamine oxidation rates, and the mitochondrial network were also normal. Finally, we found variable mitochondrial respiration and defective clearance of oxidized DNA upon cycles of starvation and refeeding. We conclude that TANGO2 disease is a life-threatening disease that needs specific cardiac management and anesthesia protocol. Mechanistically, TANGO2 disease is unlikely to originate from a primary mitochondrial defect. Rather, we suggest that mitochondrial defects are secondary to strong extrinsic triggers in TANGO2 deficient patients.


Subject(s)
Arrhythmias, Cardiac/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/deficiency , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Neurodevelopmental Disorders/genetics , Rhabdomyolysis/genetics , Adolescent , Child , Child, Preschool , Exome , Female , France , Humans , Hypothyroidism/genetics , Infant , Male , Mitochondria/genetics , Mutation , Pedigree , Phenotype , Retrospective Studies , Young Adult
17.
Brain ; 143(10): 2911-2928, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33103737

ABSTRACT

Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.


Subject(s)
Cilia/genetics , Golgi Apparatus/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Vesicular Transport Proteins/genetics , Animals , Cells, Cultured , Cilia/pathology , Female , Golgi Apparatus/pathology , Humans , Male , Mice , Mice, Knockout , Neurodevelopmental Disorders/diagnostic imaging
18.
Hum Mutat ; 41(2): 397-402, 2020 02.
Article in English | MEDLINE | ID: mdl-31680380

ABSTRACT

Pathogenic GFM1 variants have been linked to neurological phenotypes with or without liver involvement, but only a few cases have been reported in the literature. Here, we report clinical, biochemical, and neuroimaging findings from nine unrelated children carrying GFM1 variants, 10 of which were not previously reported. All patients presented with neurological involvement-mainly axial hypotonia and dystonia during the neonatal period-with five diagnosed with West syndrome; two children had liver involvement with cytolysis episodes or hepatic failure. While two patients died in infancy, six exhibited a stable clinical course. Brain magnetic resonance imaging showed the involvement of basal ganglia, brainstem, and periventricular white matter. Mutant EFG1 and OXPHOS proteins were decreased in patient's fibroblasts consistent with impaired mitochondrial translation. Thus, we expand the genetic spectrum of GFM1-linked disease and provide detailed clinical profiles of the patients that will improve the diagnostic success for other patients carrying GFM1 mutations.


Subject(s)
Fibroblasts/metabolism , Gene Expression Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Proteins/genetics , Mutation , Neuroimaging , Peptide Elongation Factor G/genetics , Alleles , Brain/diagnostic imaging , Brain/pathology , Databases, Genetic , Female , Genetic Association Studies/methods , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mitochondria/genetics , Neuroimaging/methods , Pedigree
19.
Am J Hum Genet ; 101(5): 716-724, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100085

ABSTRACT

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.


Subject(s)
Developmental Disabilities/genetics , Mutation, Missense/genetics , RNA Helicases/genetics , Adenosine Triphosphatases/genetics , Adolescent , Amino Acids/genetics , Cell Line , Cell Line, Tumor , Central Nervous System/pathology , Child , Child, Preschool , Female , HEK293 Cells , Humans , Intellectual Disability/genetics , Male , RNA/genetics
20.
J Pediatr ; 220: 184-192.e6, 2020 05.
Article in English | MEDLINE | ID: mdl-32145964

ABSTRACT

OBJECTIVE: To describe the health status of young patients affected by inborn errors of metabolism that require adherence to a restricted diet (IEMRDs) and to describe and compare their self- and proxy (parent)-reported quality of life (QoL) with reference values. STUDY DESIGN: A cross-sectional study was conducted in 2015-2017 in patients affected by IEMRDs (except phenylketonuria) younger than 18 years. Data collection was based on medical records, clinical examinations, parents' and children's interviews, and self-reported questionnaires. Measurements included clinical and healthcare data, child and family environment data, and self- and proxy (parent)-reported QoL. RESULTS: Of the 633 eligible participants, 578 were recruited (50.3% boys; mean age: 8.7 years); their anthropometric status did not differ from the general population. Approximately one-half of them had at least 1 complication of the disease. Their self-reported global QoL did not differ from that of the general population. However, relations with friends and leisure activities QoL domains were negatively impacted, whereas relations with medical staff, relations with parents, and self-esteem QoL domains were positively impacted. Their proxy (parent)-reported QoL was negatively impacted. CONCLUSIONS: Young patients affected by IEMRDs present a high rate of clinical complications. Although their proxy (parent)-reported QoL was negatively impacted, their self-reported QoL was variably impacted (both positively and negatively). These results may inform counseling for those who care for affected patients and their families.


Subject(s)
Health Status , Metabolism, Inborn Errors/diet therapy , Quality of Life , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Diet Therapy , Female , France , Humans , Male , Parents , Self Report
SELECTION OF CITATIONS
SEARCH DETAIL