Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 29: 185-214, 2011.
Article in English | MEDLINE | ID: mdl-21219183

ABSTRACT

Receptors of the innate immune system recognize conserved microbial features and provide key signals that initiate immune responses. Multiple transmembrane and cytosolic receptors have evolved to recognize RNA and DNA, including members of the Toll-like receptor and RIG-I-like receptor families and several DNA sensors. This strategy enables recognition of a broad range of pathogens; however, in some cases, this benefit is weighed against the cost of potential self recognition. Recognition of self nucleic acids by the innate immune system contributes to the pathology associated with several autoimmune or autoinflammatory diseases. In this review, we highlight our current understanding of nucleic acid sensing by innate immune receptors and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.


Subject(s)
DNA/chemistry , Infections/immunology , RNA/chemistry , Toll-Like Receptors/chemistry , Toll-Like Receptors/metabolism , Animals , Cytosol/chemistry , Endoplasmic Reticulum/metabolism , Humans , Immunity, Innate , Lysosomes/metabolism , Toll-Like Receptors/immunology
2.
Immunity ; 57(4): 632-648, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599163

ABSTRACT

One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.


Subject(s)
Dendritic Cells , Immunity, Innate , Adaptive Immunity , Receptors, Pattern Recognition/metabolism , Lymphocyte Activation
3.
Immunity ; 56(10): 2373-2387.e8, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37714151

ABSTRACT

Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.


Subject(s)
B-Lymphocytes , Peyer's Patches , Mice , Humans , Animals , Antigens/metabolism , Receptors, Antigen, B-Cell/metabolism , Immunoglobulin A , Intestinal Mucosa
4.
Cell ; 165(4): 827-41, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27153495

ABSTRACT

To maintain a symbiotic relationship between the host and its resident intestinal microbiota, appropriate mucosal T cell responses to commensal antigens must be established. Mice acquire both IgG and IgA maternally; the former has primarily been implicated in passive immunity to pathogens while the latter mediates host-commensal mutualism. Here, we report the surprising observation that mice generate T cell-independent and largely Toll-like receptor (TLR)-dependent IgG2b and IgG3 antibody responses against their gut microbiota. We demonstrate that maternal acquisition of these antibodies dampens mucosal T follicular helper responses and subsequent germinal center B cell responses following birth. This work reveals a feedback loop whereby T cell-independent, TLR-dependent antibodies limit mucosal adaptive immune responses to newly acquired commensal antigens and uncovers a broader function for maternal IgG.


Subject(s)
Animals, Newborn/immunology , Gastrointestinal Microbiome , Immunity, Mucosal , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Milk, Human/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Animals, Newborn/microbiology , B-Lymphocytes/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Signal Transduction , Specific Pathogen-Free Organisms , Toll-Like Receptors/immunology
5.
Immunity ; 49(3): 560-575.e6, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30170812

ABSTRACT

Signaling by Toll-like receptors (TLRs) on intestinal epithelial cells (IECs) is critical for intestinal homeostasis. To visualize epithelial expression of individual TLRs in vivo, we generated five strains of reporter mice. These mice revealed that TLR expression varied dramatically along the length of the intestine. Indeed, small intestine (SI) IECs expressed low levels of multiple TLRs that were highly expressed by colonic IECs. TLR5 expression was restricted to Paneth cells in the SI epithelium. Intestinal organoid experiments revealed that TLR signaling in Paneth cells or colonic IECs induced a core set of host defense genes, but this set did not include antimicrobial peptides, which instead were induced indirectly by inflammatory cytokines. This comprehensive blueprint of TLR expression and function in IECs reveals unexpected diversity in the responsiveness of IECs to microbial stimuli, and together with the associated reporter strains, provides a resource for further study of innate immunity.


Subject(s)
Colitis/immunology , Colon/pathology , Intestinal Mucosa/physiology , Intestine, Small/pathology , Paneth Cells/physiology , Animals , Antimicrobial Cationic Peptides/metabolism , Cells, Cultured , Colitis/chemically induced , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation , Homeostasis , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , Receptor Cross-Talk , Signal Transduction , Toll-Like Receptor 5/metabolism
6.
Immunity ; 47(5): 913-927.e6, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29150239

ABSTRACT

Although apoptotic cells (ACs) contain nucleic acids that can be recognized by Toll-like receptors (TLRs), engulfment of ACs does not initiate inflammation in healthy organisms. Here we identified macrophage populations that continually engulf ACs in distinct tissues and found that these macrophages share characteristics compatible with immunologically silent clearance of ACs; such characteristics include high expression of AC recognition receptors, low expression of TLR9, and reduced TLR responsiveness to nucleic acids. Removal of the macrophages from tissues resulted in loss of many of these characteristics and the ability to generate inflammatory responses to AC-derived nucleic acids, suggesting that cues from the tissue microenvironment program macrophages for silent AC clearance. The transcription factors KLF2 and KLF4 control the expression of many genes within this AC clearance program. The coordinated expression of AC receptors with genes that limit responses to nucleic acids might ensure maintenance of homeostasis and thus represent a central feature of tissue macrophages.


Subject(s)
Apoptosis , Macrophages/immunology , Animals , Female , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/physiology , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Toll-Like Receptor 7/physiology , Toll-Like Receptor 9/physiology
7.
Cell ; 147(4): 868-80, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22078883

ABSTRACT

The transport of Toll-like Receptors (TLRs) to various organelles has emerged as an essential means by which innate immunity is regulated. While most of our knowledge is restricted to regulators that promote the transport of newly synthesized receptors, the regulators that control TLR transport after microbial detection remain unknown. Here, we report that the plasma membrane localized Pattern Recognition Receptor (PRR) CD14 is required for the microbe-induced endocytosis of TLR4. In dendritic cells, this CD14-dependent endocytosis pathway is upregulated upon exposure to inflammatory mediators. We identify the tyrosine kinase Syk and its downstream effector PLCγ2 as important regulators of TLR4 endocytosis and signaling. These data establish that upon microbial detection, an upstream PRR (CD14) controls the trafficking and signaling functions of a downstream PRR (TLR4). This innate immune trafficking cascade illustrates how pathogen detection systems operate to induce both membrane transport and signal transduction.


Subject(s)
Endocytosis , Lipopolysaccharide Receptors/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Dendritic Cells/immunology , Endosomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Phospholipase C gamma/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Syk Kinase
8.
Cell ; 144(5): 675-88, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21376231

ABSTRACT

Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.


Subject(s)
Host-Pathogen Interactions , Immunity, Innate , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Signal Transduction , Toll-Like Receptors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Humans , Macrophages/immunology , Macrophages/microbiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Toll-Like Receptors/immunology
9.
Nature ; 575(7782): 366-370, 2019 11.
Article in English | MEDLINE | ID: mdl-31546246

ABSTRACT

At least two members of the Toll-like receptor (TLR) family, TLR7 and TLR9, can recognize self-RNA and self-DNA, respectively. Despite the structural and functional similarities between these receptors, their contributions to autoimmune diseases such as systemic lupus erythematosus can differ. For example, TLR7 and TLR9 have opposing effects in mouse models of systemic lupus erythematosus-disease is exacerbated in TLR9-deficient mice but attenuated in TLR7-deficient mice1. However, the mechanisms of negative regulation that differentiate between TLR7 and TLR9 are unknown. Here we report a function for the TLR trafficking chaperone UNC93B1 that specifically limits signalling of TLR7, but not TLR9, and prevents TLR7-dependent autoimmunity in mice. Mutations in UNC93B1 that lead to enhanced TLR7 signalling also disrupt binding of UNC93B1 to syntenin-1, which has been implicated in the biogenesis of exosomes2. Both UNC93B1 and TLR7 can be detected in exosomes, suggesting that recruitment of syntenin-1 by UNC93B1 facilitates the sorting of TLR7 into intralumenal vesicles of multivesicular bodies, which terminates signalling. Binding of syntenin-1 requires phosphorylation of UNC93B1 and provides a mechanism for dynamic regulation of TLR7 activation and signalling. Thus, UNC93B1 not only enables the proper trafficking of nucleic acid-sensing TLRs, but also sets the activation threshold of potentially self-reactive TLR7.


Subject(s)
Autoimmunity , Membrane Transport Proteins/metabolism , Signal Transduction , Syntenins/metabolism , Animals , Cell Line , Humans , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/genetics , Mice , Phosphorylation , Polymorphism, Single Nucleotide , Toll-Like Receptor 7/metabolism
10.
Nature ; 575(7782): 371-374, 2019 11.
Article in English | MEDLINE | ID: mdl-31546247

ABSTRACT

Nucleic acid-sensing Toll-like receptors (TLRs) are subject to complex regulation to facilitate the recognition of microbial DNA and RNA while limiting the recognition of an organism's own nucleic acids1. Failure to properly regulate these TLRs can lead to autoimmune and autoinflammatory diseases2-6. Intracellular localization of these receptors is thought to be crucial for the discrimination between self and non-self7, but the molecular mechanisms that reinforce compartmentalized activation of intracellular TLRs remain poorly understood. Here we describe a mechanism that prevents the activation of TLR9 from locations other than endosomes. This control is achieved through the regulated release of the receptor from its trafficking chaperone UNC93B1, which occurs only within endosomes and is required for ligand binding and signal transduction. Preventing release of TLR9 from UNC93B1, either by mutations in UNC93B1 that increase affinity for TLR9 or through an artificial tether that impairs release, results in defective signalling. Whereas TLR9 and TLR3 are released from UNC93B1, TLR7 does not dissociate from UNC93B1 in endosomes and is regulated by distinct mechanisms. This work defines a checkpoint that reinforces the compartmentalized activation of TLR9, and provides a mechanism by which activation of individual endosomal TLRs may be distinctly regulated.


Subject(s)
Membrane Transport Proteins/metabolism , Toll-Like Receptor 9/metabolism , Animals , Cell Line , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Protein Binding , Protein Transport , Signal Transduction , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/genetics
11.
J Surg Oncol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138890

ABSTRACT

INTRODUCTION: In surgically excising renal masses, studies have demonstrated that tumor enucleation is an effective option. However, there is limited literature comparing off-clamp to on-clamp tumor enucleation. MATERIALS AND METHODS: We retrospectively reviewed the charts of 189 patients who underwent robotic-assisted laparoscopic partial nephrectomy via tumor enucleation by a single surgeon from March 2012 and April 2022. Patients were stratified based on use of renal hilar clamping intraoperatively. Surgical, oncologic, and renal functional outcomes were captured. Variables were analyzed and compared between the two groups using Student's T-tests and Chi-square tests. RESULTS: Of 189 procedures analyzed, 124 were performed on-clamp and 65 were performed off-clamp. There were no differences in patient demographics or average length of follow-up. There were no differences in estimated blood loss, complications, or hospital length of stay. Recurrence rates were similar for the two groups. The absolute difference in estimated glomerular filtration rate change between the two groups at time of first follow-up was not significant (p = 0.25). CONCLUSIONS: There is no significant difference in perioperative outcomes such as surgical time, blood loss, or complications between the two groups. Furthermore, there was no significant difference in postoperative kidney function between the two techniques.

12.
Proc Natl Acad Sci U S A ; 117(6): 3074-3082, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31980536

ABSTRACT

Recognition of self-nucleic acids by innate immune receptors can lead to the development of autoimmune and/or autoinflammatory diseases. Elucidating mechanisms associated with dysregulated activation of specific receptors may identify new disease correlates and enable more effective therapies. Here we describe an aggressive in vivo model of Toll-like receptor (TLR) 9 dysregulation, based on bypassing the compartmentalized activation of TLR9 in endosomes, and use it to uncover unique aspects of TLR9-driven disease. By inducing TLR9 dysregulation at different stages of life, we show that while dysregulation in adult mice causes a mild systemic autoinflammatory disease, dysregulation of TLR9 early in life drives a severe inflammatory disease resulting in neonatal fatality. The neonatal disease includes some hallmarks of macrophage activation syndrome but is much more severe than previously described models. Unlike TLR7-mediated disease, which requires type I interferon (IFN) receptor signaling, TLR9-driven fatality is dependent on IFN-γ receptor signaling. NK cells are likely key sources of IFN-γ in this model. We identify populations of macrophages and Ly6Chi monocytes in neonates that express high levels of TLR9 and low levels of TLR7, which may explain why TLR9 dysregulation is particularly consequential early in life, while symptoms of TLR7 dysregulation take longer to manifest. Overall, this study demonstrates that inappropriate TLR9 responses can drive a severe autoinflammatory disease under homeostatic conditions and highlights differences in the diseases resulting from inappropriate activation of TLR9 and TLR7.


Subject(s)
Autoimmune Diseases/metabolism , Inflammation/metabolism , Interferon-gamma/metabolism , Toll-Like Receptor 9/metabolism , Animals , Animals, Newborn , Autoimmune Diseases/immunology , Cells, Cultured , Inflammation/immunology , Interferon-gamma/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Transgenic , Monocytes/immunology , Monocytes/metabolism , Signal Transduction/immunology , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology
13.
Radiology ; 305(3): 688-696, 2022 12.
Article in English | MEDLINE | ID: mdl-35880982

ABSTRACT

Background Idiopathic pulmonary fibrosis (IPF) is a temporally and spatially heterogeneous lung disease. Identifying whether IPF in a patient is progressive or stable is crucial for treatment regimens. Purpose To assess the role of hyperpolarized (HP) xenon 129 (129Xe) MRI measures of ventilation and gas transfer in IPF generally and as an early signature of future IPF progression. Materials and Methods In a prospective study, healthy volunteers and participants with IPF were consecutively recruited between December 2015 and August 2019 and underwent baseline HP 129Xe MRI and chest CT. Participants with IPF were followed up with forced vital capacity percent predicted (FVC%p), diffusing capacity of the lungs for carbon monoxide percent predicted (DLco%p), and clinical outcome at 1 year. IPF progression was defined as reduction in FVC%p by at least 10%, reduction in DLco%p by at least 15%, or admission to hospice care. CT and MRI were spatially coregistered and a measure of pulmonary gas transfer (red blood cell [RBC]-to-barrier ratio) and high-ventilation percentage of lung volume were compared across groups and across fibrotic versus normal-appearing regions at CT by using Wilcoxon signed rank tests. Results Sixteen healthy volunteers (mean age, 57 years ± 14 [SD]; 10 women) and 22 participants with IPF (mean age, 71 years ± 9; 15 men) were evaluated, as follows: nine IPF progressors (mean age, 72 years ± 7; five women) and 13 nonprogressors (mean age, 70 years ± 10; 11 men). Reduction of high-ventilation percent (13% ± 6.1 vs 8.2% ± 5.9; P = .03) and RBC-to-barrier ratio (0.26 ± 0.06 vs 0.20 ± 0.06; P = .03) at baseline were associated with progression of IPF. Participants with progressive disease had reduced RBC-to-barrier ratio in structurally normal-appearing lung at CT (0.21 ± 0.07 vs 0.28 ± 0.05; P = .01) but not in fibrotic regions of the lung (0.15 ± 0.09 vs 0.14 ± 0.04; P = .62) relative to the nonprogressive group. Conclusion In this preliminary study, functional measures of gas transfer and ventilation measured with xenon 129 MRI and the extent of fibrotic structure at CT were associated with idiopathic pulmonary fibrosis disease progression. Differences in gas transfer were found in regions of nonfibrotic lung. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Gleeson and Fraser in this issue.


Subject(s)
Idiopathic Pulmonary Fibrosis , Male , Female , Humans , Middle Aged , Aged , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Prospective Studies , Lung/diagnostic imaging , Magnetic Resonance Spectroscopy , Respiratory Function Tests
14.
Eur Respir J ; 60(4)2022 10.
Article in English | MEDLINE | ID: mdl-35273033

ABSTRACT

BACKGROUND: The objective of this work was to apply quantitative and semiquantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) methods to evaluate lung perfusion in idiopathic pulmonary fibrosis (IPF). METHODS: In this prospective trial 41 subjects, including healthy control and IPF subjects, were studied using DCE-MRI at baseline. IPF subjects were then followed for 1 year; progressive IPF (IPFprog) subjects were distinguished from stable IPF (IPFstable) subjects based on a decline in percent predicted forced vital capacity (FVC % pred) or diffusing capacity of the lung for carbon monoxide (D LCO % pred) measured during follow-up visits. 35 out of 41 subjects were retained for final baseline analysis (control: n=15; IPFstable: n=14; IPFprog: n=6). Seven measures and their coefficients of variation (CV) were derived using temporally resolved DCE-MRI. Two sets of global and regional comparisons were made: control versus IPF groups and control versus IPFstable versus IPFprog groups, using linear regression analysis. Each measure was compared with FVC % pred, D LCO % pred and the lung clearance index (LCI % pred) using a Spearman rank correlation. RESULTS: DCE-MRI identified regional perfusion differences between control and IPF subjects using first moment transit time (FMTT), contrast uptake slope and pulmonary blood flow (PBF) (p≤0.05), while global averages did not. FMTT was shorter for IPFprog compared with both IPFstable (p=0.004) and control groups (p=0.023). Correlations were observed between PBF CV and D LCO % pred (rs= -0.48, p=0.022) and LCI % pred (rs= +0.47, p=0.015). Significant group differences were detected in age (p<0.001), D LCO % pred (p<0.001), FVC % pred (p=0.001) and LCI % pred (p=0.007). CONCLUSIONS: Global analysis obscures regional changes in pulmonary haemodynamics in IPF using DCE-MRI in IPF. Decreased FMTT may be a candidate marker for IPF progression.


Subject(s)
Idiopathic Pulmonary Fibrosis , Carbon Monoxide , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Perfusion , Prospective Studies , Vital Capacity
15.
Am J Physiol Heart Circ Physiol ; 320(6): H2295-H2304, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33861148

ABSTRACT

Extreme preterm birth conveys an elevated risk of heart failure by young adulthood. Smaller biventricular chamber size, diastolic dysfunction, and pulmonary hypertension may contribute to reduced ventricular-vascular coupling. However, how hemodynamic manipulations may affect right ventricular (RV) function and coupling remains unknown. As a pilot study, 4D flow MRI was used to assess the effect of afterload reduction and heart rate reduction on cardiac hemodynamics and function. Young adults born premature were administered sildenafil (a pulmonary vasodilator) and metoprolol (a ß blocker) on separate days, and MRI with 4D flow completed before and after each drug administration. Endpoints include cardiac index (CI), direct flow fractions, and ventricular kinetic energy including E/A wave kinetic energy ratio. Sildenafil resulted in a median CI increase of 0.24 L/min/m2 (P = 0.02), mediated through both an increase in heart rate (HR) and stroke volume. Although RV ejection fraction improved only modestly, there was a significant increase (4% of end diastolic volume) in RV direct flow fraction (P = 0.04), consistent with hemodynamic improvement. Metoprolol administration resulted in a 5-beats/min median decrease in HR (P = 0.01), a 0.37 L/min/m2 median decrease in CI (P = 0.04), and a reduction in time-averaged kinetic energy (KE) in both ventricles (P < 0.01), despite increased RV diastolic E/A KE ratio (P = 0.04). Despite reduced right atrial workload, metoprolol significantly depressed overall cardiac systolic function. Sildenafil, however, increased CI and improved RV function, as quantified by the direct flow fraction. The preterm heart appears dependent on HR but sensitive to RV afterload manipulations.NEW & NOTEWORTHY We assessed the effect of right ventricular afterload reduction with sildenafil and heart rate reduction with metoprolol on cardiac hemodynamics and function in young adults born premature using 4D flow MRI. Metoprolol depressed cardiac function, whereas sildenafil improved cardiac function including right ventricular direct flow fraction by 4D flow, consistent with hemodynamic improvement. This suggests that the preterm heart is dependent on heart rate and sensitive to right ventricular afterload changes.


Subject(s)
Sildenafil Citrate/pharmacology , Vasodilator Agents/pharmacology , Ventricular Function, Right/drug effects , Adrenergic beta-1 Receptor Antagonists/pharmacology , Adult , Female , Follow-Up Studies , Heart Rate , Hemodynamics , Humans , Imaging, Three-Dimensional , Infant, Extremely Premature , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine , Male , Metoprolol/pharmacology , Pilot Projects , Stroke Volume
16.
Nat Immunol ; 10(11): 1200-7, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19801985

ABSTRACT

Despite the paradigm that the innate immune system uses nucleic acid-specific receptors to detect viruses because of a lack of other conserved features, many viruses are recognized by Toll-like receptor 2 (TLR2) and TLR4. The relevance of this recognition for antiviral immunity remains largely unexplained. Here we report that TLR2 activation by viruses led to the production of type I interferon. TLR2-dependent induction of type I interferon occurred only in response to viral ligands, which indicates that TLR2 is able to discriminate between pathogen classes. We demonstrate that this specialized response was mediated by Ly6C(hi) inflammatory monocytes. Thus, the innate immune system can detect certain non-nucleic acid features of viruses and links this recognition to the induction of specific antiviral genes.


Subject(s)
Interferon Type I/immunology , Monocytes/immunology , Toll-Like Receptor 2/immunology , Vaccinia/immunology , Animals , CD11 Antigens/immunology , Cell Line , Cricetinae , Flow Cytometry , Humans , Immunity, Innate , Interferon Type I/metabolism , Ligands , Mice , Mice, Inbred C57BL , Monocytes/virology , Signal Transduction , Spleen/cytology , Spleen/immunology , Toll-Like Receptor 2/metabolism , Vaccinia virus/immunology
17.
Pediatr Res ; 90(6): 1147-1152, 2021 12.
Article in English | MEDLINE | ID: mdl-33619358

ABSTRACT

BACKGROUND: Premature birth affects roughly 10% of live births and is associated with long-term increased risk for multiple comorbidities. Although many comorbidities are associated with increased oxidative stress, the potential late impact of extreme premature birth on mitochondrial function has not previously been assessed. We hypothesized that mitochondrial function would be impaired in adult survivors of premature birth. METHODS: Mitochondrial function in peripheral blood mononuclear cells from young adults born moderately to extremely preterm was measured using a Seahorse XF Analyzer at baseline and in response to acute oxidative stress, and compared to age-matched term-born adults. Adult pulmonary function was also obtained. RESULTS: Young adults born preterm (average gestational age 29 weeks) had increased mitochondrial oxygen consumption at baseline, particularly with respect to basal and non-ATP-linked respiration. Maximal and spare capacities were also higher, even in response to acute oxidative stress. Lung function was lower in adults born preterm, and the degree of airflow obstruction correlated only modestly with mitochondrial function. CONCLUSIONS: In conclusion, adults born preterm have higher basal and non-ATP-linked mitochondrial respiration. Similar mitochondrial profiles have previously been documented in diabetics, and may support the increased risk for cardiometabolic disease in adults born preterm. IMPACT: Adults born preterm have higher maximal but also higher basal and non-ATP-linked mitochondrial respiration. Similar mitochondrial profiles have previously been documented in diabetics, and may support the increased risk for cardiometabolic disease in adults born preterm. Prior studies demonstrate a link between perinatal mitochondrial function and risk for development of bronchopulmonary dysplasia. Here, maximal mitochondrial respiration correlates modestly with adult lung function. Peripheral blood mononuclear cell mitochondrial function may be a biomarker of both early lung function and late cardiometabolic risk after preterm birth.


Subject(s)
Infant, Premature , Mitochondria/metabolism , Oxygen Consumption , Adult , Cohort Studies , Female , Humans , Infant, Newborn , Male , Young Adult
18.
J Cardiovasc Magn Reson ; 23(1): 13, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33627121

ABSTRACT

BACKGROUND: Branch pulmonary artery (PA) stenosis (PAS) commonly occurs in patients with congenital heart disease (CHD). Prior studies have documented technical success and clinical outcomes of PA stent interventions for PAS but the impact of PA stent interventions on ventricular function is unknown. The objective of this study was to utilize 4D flow cardiovascular magnetic resonance (CMR) to better understand the impact of PAS and PA stenting on ventricular contraction and ventricular flow in a swine model of unilateral branch PA stenosis. METHODS: 18 swine (4 sham, 4 untreated left PAS, 10 PAS stent intervention) underwent right heart catheterization and CMR at 20 weeks age (55 kg). CMR included ventricular strain analysis and 4D flow CMR. RESULTS: 4D flow CMR measured inefficient right ventricular (RV) and left ventricular (LV) flow patterns in the PAS group (RV non-dimensional (n.d.) vorticity: sham 82 ± 47, PAS 120 ± 47; LV n.d. vorticity: sham 57 ± 5, PAS 78 ± 15 p < 0.01) despite the PAS group having normal heart rate, ejection fraction and end-diastolic volume. The intervention group demonstrated increased ejection fraction that resulted in more efficient ventricular flow compared to untreated PAS (RV n.d. vorticity: 59 ± 12 p < 0.01; LV n.d. vorticity: 41 ± 7 p < 0.001). CONCLUSION: These results describe previously unknown consequences of PAS on ventricular function in an animal model of unilateral PA stenosis and show that PA stent interventions improve ventricular flow efficiency. This study also highlights the sensitivity of 4D flow CMR biomarkers to detect earlier ventricular dysfunction assisting in identification of patients who may benefit from PAS interventions.


Subject(s)
Endovascular Procedures/instrumentation , Pulmonary Artery/physiopathology , Stenosis, Pulmonary Artery/therapy , Stents , Ventricular Dysfunction, Right/therapy , Ventricular Function, Left , Ventricular Function, Right , Animals , Computed Tomography Angiography , Disease Models, Animal , Magnetic Resonance Imaging, Cine , Myocardial Contraction , Myocardial Perfusion Imaging , Pulmonary Artery/diagnostic imaging , Recovery of Function , Stenosis, Pulmonary Artery/diagnostic imaging , Stenosis, Pulmonary Artery/physiopathology , Sus scrofa , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/physiopathology
19.
J Cardiovasc Magn Reson ; 23(1): 116, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34670573

ABSTRACT

BACKGROUND: Preterm birth has been linked to an elevated risk of heart failure and cardiopulmonary disease later in life. With improved neonatal care and survival, most infants born preterm are now reaching adulthood. In this study, we used 4D flow cardiovascular magnetic resonance (CMR) coupled with an exercise challenge to assess the impact of preterm birth on right heart flow dynamics in otherwise healthy adolescents and young adults who were born preterm. METHODS: Eleven young adults and 17 adolescents born preterm (< 32 weeks of gestation and < 1500 g birth weight) were compared to 11 young adult and 18 adolescent age-matched controls born at term. Stroke volume, cardiac output, and flow in the main pulmonary artery were quantified with 4D flow CMR. Kinetic energy and vorticity were measured in the right ventricle. All parameters were measured at rest and during exercise at a power corresponding to 70% VO2max for each subject. Multivariate linear regression was used to perform age-adjusted term-preterm comparisons. RESULTS: With exercise, stroke volume increased 10 ± 21% in term controls and decreased 4 ± 18% in preterm born subjects (p = 0.007). This resulted in significantly reduced capacity to increase cardiac output in response to exercise stress for the preterm group (58 ± 26% increase in controls, 36 ± 27% increase in preterm, p = 0.004). Elevated kinetic energy (KEterm = 71 ± 22 nJ, KEpreterm = 87 ± 38 nJ, p = 0.03) and vorticity (ωterm = 79 ± 16 s-1, ωpreterm = 94 ± 32 s-1, p = 0.01) during diastole in the right ventricle (RV) suggested altered RV flow dynamics in the preterm subjects. Streamline visualizations showed altered structure to the diastolic filling vortices in those born preterm. CONCLUSIONS: For the participants examined here, preterm birth appeared to result in altered right-heart flow dynamics as early as adolescence, especially during diastole. Future studies should evaluate whether the altered dynamics identified here evolves into cardiopulmonary disease later in life. Trial registration None.


Subject(s)
Premature Birth , Adolescent , Adult , Exercise Test , Female , Heart Ventricles , Humans , Infant, Newborn , Predictive Value of Tests , Pregnancy , Stroke Volume , Young Adult
20.
Neurourol Urodyn ; 40(4): 1056-1062, 2021 04.
Article in English | MEDLINE | ID: mdl-33811366

ABSTRACT

AIMS: The artificial urinary sphincter (AUS), the gold standard for treatment of male stress urinary incontinence, can be filled with normal saline (NS) or isotonic contrast solution. Surgeons have voiced concerns about the impact on device malfunction and longevity, but no studies address this issue. We used industry data to identify differences in outcomes between NS and contrast-filled AUS. METHODS: Our analysis included all men patients in the industry who maintained the AUS database (Boston Scientific) from 2001 to 2016. Patients were divided into two groups: AUS filled with NS or contrast. Patient demographics and device characteristics were compared. Device survival was defined as time to the need for reoperation. We compared device survival between AUS filled with NS versus contrast using a Kaplan-Meier curve adjusted for age, cuff size, and pressure regulating balloon (PRB) size. RESULTS: A total of 39,363 patients were included. 34,674 (88.1%) devices were filled with NS. The reoperation rate overall was 24.5%, with no difference between groups. The mean time to reoperation overall was 3 years (±3.0). After adjustment for age, cuff size, and PRB size, Kaplan-Meier analysis demonstrated a similar time to reoperation between the two groups. CONCLUSION: The use of contrast in the AUS does not appear to change rates of the device malfunction, fluid loss, or need for reoperation. Since filling the device with contrast does not appear inferior to saline in terms of longevity, we feel this should be considered a safe tool for the implanting surgeon.


Subject(s)
Urinary Incontinence, Stress , Urinary Sphincter, Artificial , Humans , Longevity , Male , Reoperation , Retrospective Studies , Treatment Outcome , Urinary Incontinence, Stress/surgery
SELECTION OF CITATIONS
SEARCH DETAIL