Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088847

ABSTRACT

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Pollen/genetics , Pregnancy Proteins/genetics , Zea mays/genetics , Meiosis/genetics , Mitosis/genetics
2.
New Phytol ; 237(6): 2255-2267, 2023 03.
Article in English | MEDLINE | ID: mdl-36545937

ABSTRACT

The regulation of flavonoid biosynthesis is only partially explored in pepper (Capsicum annuum L.). The genetic basis underlying flavonoid variation in pepper fruit was studied. Variation of flavonoids in fruit of a segregating F2 population was studied using LC-MS followed by quantitative trait locus (QTL) analysis. Near-isogenic lines (NILs), BC1 S1 populations, virus-induced gene silenced (VIGS) and transgenic overexpression were used to confirm the QTL and the underlying candidate gene. A major QTL for flavonoid content was found in chromosome 5, and a CaMYB12-like transcription factor gene was identified as candidate gene. Near-isogenic lines (NILs) contrasting for CaMYB12-like confirmed its association with the flavonoid content variation. Virus-induced gene silencing (VIGS) of CaMYB12-like led to a significant decrease in the expression of several flavonoid pathway genes and a drastic decrease in flavonoid levels in silenced fruits. Expression of CaMYB12-like in the tomato slmyb12 mutant led to enhanced levels of several flavonoids in the fruit skin. Introgression of the CaMYB12-like allele into two cultivated varieties also increased flavonoid content in their fruits. A combination of metabolomic, genetic and gene functional analyses led to discovery of CaMYB12-like as a major regulator of flavonoid variation in pepper fruit and demonstrated its potential to breed for high-flavonoid content in cultivated pepper.


Subject(s)
Capsicum , Fruit , Fruit/physiology , Quantitative Trait Loci/genetics , Capsicum/genetics , Flavonoids/metabolism , Plant Breeding
3.
Plant J ; 100(5): 1066-1082, 2019 12.
Article in English | MEDLINE | ID: mdl-31433882

ABSTRACT

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single-nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.


Subject(s)
Fabaceae/genetics , Genetic Variation , Genome, Plant , Alleles , Centromere/genetics , Disease Resistance/genetics , Genetics, Population , Genotype , Haplotypes , Hardness , Multigene Family , Phylogeny , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Repetitive Sequences, Nucleic Acid , Seed Bank/classification , Sequence Inversion , Telomere/genetics
4.
Plant Cell ; 28(11): 2700-2714, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27803309

ABSTRACT

Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.


Subject(s)
Genome, Plant/genetics , Transcriptome/genetics , Zea mays/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Genetic Variation/genetics
5.
EMBO J ; 30(1): 221-31, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21113130

ABSTRACT

Two major arms of the inflammatory response are the NF-κB and c-Jun N-terminal kinase (JNK) pathways. Here, we show that enteropathogenic Escherichia coli (EPEC) employs the type III secretion system to target these two signalling arms by injecting host cells with two effector proteins, NleC and NleD. We provide evidence that NleC and NleD are Zn-dependent endopeptidases that specifically clip and inactivate RelA (p65) and JNK, respectively, thus blocking NF-κB and AP-1 activation. We show that NleC and NleD co-operate and complement other EPEC effectors in accomplishing maximal inhibition of IL-8 secretion. This is a remarkable example of a pathogen using multiple effectors to manipulate systematically the host inflammatory response signalling network.


Subject(s)
Enteropathogenic Escherichia coli/physiology , Escherichia coli Infections/immunology , Escherichia coli Proteins/immunology , Host-Pathogen Interactions , JNK Mitogen-Activated Protein Kinases/immunology , NF-kappa B/immunology , Apoptosis , Enteropathogenic Escherichia coli/immunology , Escherichia coli Proteins/genetics , Gene Expression , HeLa Cells , Humans , Interleukin-8/genetics , Interleukin-8/immunology , Mitogen-Activated Protein Kinase 9/immunology , Transcription Factor RelA/immunology , Transcription, Genetic , Tumor Necrosis Factor-alpha/immunology
6.
Nat Genet ; 56(6): 1225-1234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783120

ABSTRACT

Chickpea (Cicer arietinum L.)-an important legume crop cultivated in arid and semiarid regions-has limited genetic diversity. Efforts are being undertaken to broaden its diversity by utilizing its wild relatives, which remain largely unexplored. Here, we present the Cicer super-pangenome based on the de novo genome assemblies of eight annual Cicer wild species. We identified 24,827 gene families, including 14,748 core, 2,958 softcore, 6,212 dispensable and 909 species-specific gene families. The dispensable genome was enriched for genes related to key agronomic traits. Structural variations between cultivated and wild genomes were used to construct a graph-based genome, revealing variations in genes affecting traits such as flowering time, vernalization and disease resistance. These variations will facilitate the transfer of valuable traits from wild Cicer species into elite chickpea varieties through marker-assisted selection or gene-editing. This study offers valuable insights into the genetic diversity and potential avenues for crop improvement in chickpea.


Subject(s)
Cicer , Crops, Agricultural , Genome, Plant , Quantitative Trait Loci , Cicer/genetics , Crops, Agricultural/genetics , Genetic Variation , Evolution, Molecular , Plant Breeding/methods , Phylogeny , Phenotype
7.
PLoS Pathog ; 6(1): e1000743, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20126447

ABSTRACT

The complex host-pathogen interplay involves the recognition of the pathogen by the host's innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kappaB, followed by inflammation and eradication of the intruders. In response, some pathogens, including enteropathogenic Escherichia coli (EPEC), acquired means of blocking NF-kappaB activation. We show that inhibition of NF-kappaB activation by EPEC involves the injection of NleE into the host cell. Importantly, we show that NleE inhibits NF-kappaB activation by preventing activation of IKKbeta and consequently the degradation of the NF-kappaB inhibitor, IkappaB. This NleE activity is enhanced by, but is not dependent on, a second injected effector, NleB. In conclusion, this study describes two effectors, NleB and NleE, with no similarity to other known proteins, used by pathogens to manipulate NF-kappaB signaling pathways.


Subject(s)
Enzyme Activation/physiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology , Virulence Factors/metabolism , Blotting, Western , Enteropathogenic Escherichia coli/metabolism , HeLa Cells , Humans , I-kappa B Proteins/metabolism , Protein Transport/physiology , Transfection
8.
Nucleic Acids Res ; 36(6): 1913-27, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18267966

ABSTRACT

The emergence of pathogenic strains of enteric bacteria and their adaptation to unique niches are associated with the acquisition of foreign DNA segments termed 'genetic islands'. We explored these islands for the occurrence of small RNA (sRNA) encoding genes. Previous systematic screens for enteric bacteria sRNAs were mainly carried out using the laboratory strain Escherichia coli K12, leading to the discovery of approximately 80 new sRNA genes. These searches were based on conservation within closely related members of enteric bacteria and thus, sRNAs, unique to pathogenic strains were excluded. Here we describe the identification and characterization of 19 novel unique sRNA genes encoded within the 'genetic islands' of the virulent strain Salmonella typhimurium. We show that the expression of many of the island-encoded genes is associated with stress conditions and stationary phase. Several of these sRNA genes are induced when Salmonella resides within macrophages. One sRNA, IsrJ, was further examined and found to affect the translocation efficiency of virulence-associated effector proteins into nonphagocytic cells. In addition, we report that unlike the majority of the E. coli sRNAs that are trans regulators, many of the island-encoded sRNAs affect the expression of cis-encoded genes. Our study suggests that the island encoded sRNA genes play an important role within the network that regulates bacterial adaptation to environmental changes and stress conditions and thus controls virulence.


Subject(s)
Genomic Islands , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence Factors/genetics , Base Sequence , Computational Biology , Gene Expression , Gene Expression Regulation, Bacterial , HeLa Cells , Humans , Macrophages/microbiology , Molecular Sequence Data , RNA, Bacterial/analysis , RNA, Bacterial/metabolism , RNA, Untranslated/analysis , RNA, Untranslated/metabolism , Salmonella typhimurium/metabolism , Virulence , Virulence Factors/metabolism
9.
DNA Res ; 27(5)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33340318

ABSTRACT

Sweet basil, Ocimum basilicum L., is a well-known culinary herb grown worldwide, but its uses go beyond the kitchen to traditional medicine, cosmetics and gardening. To date, the lack of an available reference genome has limited the utilization of advanced molecular breeding methods. We present a draft version of the sweet basil genome of the cultivar 'Perrie', a fresh-cut Genovese-type basil. Genome sequencing showed basil to be a tetraploid organism with a genome size of 2.13 Gbp, assembled in 12,212 scaffolds, with > 90% of the assembly being composed of 107 scaffolds. About 76% of the genome is composed of repetitive elements, with the majority being long-terminal repeats. We constructed and annotated 62,067 protein-coding genes and determined their expression in different plant tissues. We analysed the currently known phenylpropanoid volatiles biosynthesis genes. We demonstrated the necessity of the reference genome for a comprehensive understanding of this important pathway in the context of tetraploidy and gene redundancy. A complete reference genome is essential to overcome this redundancy and to avoid off-targeting when designing a CRISPR: Cas9-based genome editing research. This work bears promise for developing fast and accurate breeding tools to provide better cultivars for farmers and improved products for consumers.


Subject(s)
Biosynthetic Pathways , Genome, Plant , Ocimum basilicum/genetics , Sequence Analysis, DNA , Allyl Compounds/metabolism , Chromosome Mapping , DNA Shuffling , Eugenol/metabolism , Gene Editing , Ocimum basilicum/enzymology , Ocimum basilicum/metabolism , Phenols/metabolism , Phylogeny , Tetraploidy
11.
Sci Rep ; 9(1): 12408, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455815

ABSTRACT

The cultivation of monosex populations is common in animal husbandry. However, preselecting the desired gender remains a major biotechnological and ethical challenge. To achieve an efficient biotechnology for all-female aquaculture in the economically important prawn (Macrobrachium rosenbergii), we achieved - for the first time - WW males using androgenic gland cells transplantation which caused full sex-reversal of WW females to functional males. Crossing the WW males with WW females yielded all-female progeny lacking the Z chromosome. We now have the ability to manipulate - by non-genomic means - all possible genotype combinations (ZZ, WZ and WW) to retain either male or female phenotypes and hence to produce monosex populations of either gender. This calls for a study of the genomic basis underlying this striking sexual plasticity, questioning the content of the W and Z chromosomes. Here, we report on the sequencing of a high-quality genome exhibiting distinguishable paternal and maternal sequences. This assembly covers ~ 87.5% of the genome and yielded a remarkable N50 value of ~ 20 × 106 bp. Genomic sex markers were used to initiate the identification and validation of parts of the W and Z chromosomes for the first time in arthropods.


Subject(s)
Palaemonidae/genetics , Sex Chromosomes , Animals , Female , Genome , Genotype , Larva/genetics , Male , Palaemonidae/growth & development , Phenotype , Sex Determination Analysis , Sex Differentiation
12.
Gigascience ; 8(3)2019 03 01.
Article in English | MEDLINE | ID: mdl-30698692

ABSTRACT

High-quality genomes are essential to resolve challenges in breeding, comparative biology, medicine, and conservation planning. New library preparation techniques along with better assembly algorithms result in continued improvements in assemblies for non-model organisms, moving them toward reference-quality genomes. We report on the latest genome assembly of the Atlantic bottlenose dolphin, leveraging Illumina sequencing data coupled with a combination of several library preparation techniques. These include Linked-Reads (Chromium, 10x Genomics), mate pairs (MP), long insert paired ends, and standard paired end. Data were assembled with the commercial DeNovoMAGIC assembly software, resulting in two assemblies, a traditional "haploid" assembly (Tur_tru_Illumina_hap_v1) that is a mosaic of the two parental haplotypes and a phased assembly (Tur_tru_Illumina_phased_v1) where each scaffold has sequence from a single homologous chromosome. We show that Tur_tru_Illumina_hap_v1 is more complete and more accurate compared to the current best reference based on the amount and composition of sequence, the consistency of the MP alignments to the assembled scaffolds, and on the analysis of conserved single-copy mammalian orthologs. The phased de novo assembly Tur_tru_Illumina_phased_v1 is the first publicly available for this species and provides the community with novel and accurate ways to explore the heterozygous nature of the dolphin genome.


Subject(s)
Bottle-Nosed Dolphin/genetics , Genome , Haplotypes , Whole Genome Sequencing , Animals , Female , Genomics
13.
Nat Genet ; 51(4): 765, 2019 04.
Article in English | MEDLINE | ID: mdl-30842601

ABSTRACT

In the version of this article originally published, author Joshua R. Puzey was incorrectly listed as having affiliation 7 (School of Plant Sciences, University of Arizona, Tucson, AZ, USA); affiliation 6 (Department of Biology, College of William and Mary, Williamsburg, VA, USA) is the correct affiliation. The error has been corrected in the HTML and PDF versions of the article.

14.
Nat Genet ; 51(4): 739-748, 2019 04.
Article in English | MEDLINE | ID: mdl-30886425

ABSTRACT

Allotetraploid cotton is an economically important natural-fiber-producing crop worldwide. After polyploidization, Gossypium hirsutum L. evolved to produce a higher fiber yield and to better survive harsh environments than Gossypium barbadense, which produces superior-quality fibers. The global genetic and molecular bases for these interspecies divergences were unknown. Here we report high-quality de novo-assembled genomes for these two cultivated allotetraploid species with pronounced improvement in repetitive-DNA-enriched centromeric regions. Whole-genome comparative analyses revealed that species-specific alterations in gene expression, structural variations and expanded gene families were responsible for speciation and the evolutionary history of these species. These findings help to elucidate the evolution of cotton genomes and their domestication history. The information generated not only should enable breeders to improve fiber quality and resilience to ever-changing environmental conditions but also can be translated to other crops for better understanding of their domestication history and use in improvement.


Subject(s)
Genome, Plant/genetics , Gossypium/genetics , Chromosomes, Plant/genetics , Cotton Fiber , Domestication , Gene Expression/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Repetitive Sequences, Nucleic Acid/genetics
15.
Nat Genet ; 51(3): 541-547, 2019 03.
Article in English | MEDLINE | ID: mdl-30804557

ABSTRACT

Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.


Subject(s)
Fragaria/genetics , Genome, Plant/genetics , Chromosomes, Plant/genetics , Diploidy , Evolution, Molecular , Gene Expression/genetics , Hybridization, Genetic/genetics , Plant Breeding/methods , Polyploidy
16.
Gigascience ; 8(3)2019 03 01.
Article in English | MEDLINE | ID: mdl-30715294

ABSTRACT

BACKGROUND: Highbush blueberry (Vaccinium corymbosum) has long been consumed for its unique flavor and composition of health-promoting phytonutrients. However, breeding efforts to improve fruit quality in blueberry have been greatly hampered by the lack of adequate genomic resources and a limited understanding of the underlying genetics encoding key traits. The genome of highbush blueberry has been particularly challenging to assemble due, in large part, to its polyploid nature and genome size. FINDINGS: Here, we present a chromosome-scale and haplotype-phased genome assembly of the cultivar "Draper," which has the highest antioxidant levels among a diversity panel of 71 cultivars and 13 wild Vaccinium species. We leveraged this genome, combined with gene expression and metabolite data measured across fruit development, to identify candidate genes involved in the biosynthesis of important phytonutrients among other metabolites associated with superior fruit quality. Genome-wide analyses revealed that both polyploidy and tandem gene duplications modified various pathways involved in the biosynthesis of key phytonutrients. Furthermore, gene expression analyses hint at the presence of a spatial-temporal specific dominantly expressed subgenome including during fruit development. CONCLUSIONS: These findings and the reference genome will serve as a valuable resource to guide future genome-enabled breeding of important agronomic traits in highbush blueberry.


Subject(s)
Blueberry Plants/genetics , Evolution, Molecular , Genome, Plant , Haplotypes/genetics , Phytochemicals/genetics , Tetraploidy , Antioxidants/metabolism , Biosynthetic Pathways/genetics , Chromosomes, Plant/genetics , Fruit/genetics , Fruit/growth & development , Gene Duplication , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Annotation , Multigene Family , Phytochemicals/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Nat Ecol Evol ; 3(12): 1731-1742, 2019 12.
Article in English | MEDLINE | ID: mdl-31768021

ABSTRACT

Males and females often differ in their fitness optima for shared traits that have a shared genetic basis, leading to sexual conflict. Morphologically differentiated sex chromosomes can resolve this conflict and protect sexually antagonistic variation, but they accumulate deleterious mutations. However, how sexual conflict is resolved in species that lack differentiated sex chromosomes is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 55-Mb double-inversion supergene that mediates sex-specific migratory tendency through sex-dependent dominance reversal, an alternative mechanism for resolving sexual conflict. The double inversion contains key photosensory, circadian rhythm, adiposity and sex-related genes and displays a latitudinal frequency cline, indicating environmentally dependent selection. Our results show sex-dependent dominance reversal across a large autosomal supergene, a mechanism for sexual conflict resolution capable of protecting sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutations associated with typical heteromorphic sex chromosomes.


Subject(s)
Oncorhynchus mykiss , Animals , Female , Male , Phenotype , Sex Chromosomes
19.
J Bacteriol ; 190(14): 5063-74, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18502854

ABSTRACT

Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4 capsule (G4C), and in this report we show that EHEC O157 also produces a G4C, whose assembly is dependent on the etp, etk, and wzy genes. We further show that at early time points postinfection, these G4Cs appear to mask surface structures including intimin and the TTSS. This masking inhibited the attachment of EPEC and EHEC to tissue-cultured epithelial cells, diminished their capacity to induce the formation of actin pedestals, and attenuated TTSS-mediated protein translocation into host cells. Importantly, we found that Ler, a positive regulator of intimin and TTSS genes, represses the expression of the capsule-related genes, including etp and etk. Thus, the expression of TTSS and G4C is conversely regulated and capsule production is diminished upon TTSS expression. Indeed, at later time points postinfection, the diminishing capsule no longer interferes with the activities of intimin and the TTSS. Notably, by using the rabbit infant model, we found that the EHEC G4C is required for efficient colonization of the rabbit large intestine. Taken together, our results suggest that temporal expression of the capsule, which is coordinated with that of the TTSS, is required for optimal EHEC colonization of the host intestine.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Capsules/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli O157/pathogenicity , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/metabolism , Virulence Factors/metabolism , Animals , Bacterial Adhesion , Bacterial Capsules/ultrastructure , Cell Line , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/ultrastructure , Epithelial Cells/microbiology , Erythrocytes/microbiology , Escherichia coli Infections , Escherichia coli O157/metabolism , Escherichia coli O157/ultrastructure , Escherichia coli Proteins/genetics , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Intestine, Large/microbiology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron, Transmission , Mutagenesis, Insertional , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Rabbits , Trans-Activators/metabolism
20.
Nat Genet ; 50(9): 1282-1288, 2018 09.
Article in English | MEDLINE | ID: mdl-30061736

ABSTRACT

The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.


Subject(s)
DNA Transposable Elements/genetics , Genes, Plant/genetics , Genome, Plant/genetics , Zea mays/genetics , Chromatin/genetics , Chromosomes, Plant/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , DNA, Plant/genetics , Genomics/methods , Open Reading Frames/genetics , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL