Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nucleic Acids Res ; 51(13): 6622-6633, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37246710

ABSTRACT

The specificity of DNMT1 for hemimethylated DNA is a central feature for the inheritance of DNA methylation. We investigated this property in competitive methylation kinetics using hemimethylated (HM), hemihydroxymethylated (OH) and unmethylated (UM) substrates with single CpG sites in a randomized sequence context. DNMT1 shows a strong flanking sequence dependent HM/UM specificity of 80-fold on average, which is slightly enhanced on long hemimethylated DNA substrates. To explain this strong effect of a single methyl group, we propose a novel model in which the presence of the 5mC methyl group changes the conformation of the DNMT1-DNA complex into an active conformation by steric repulsion. The HM/OH preference is flanking sequence dependent and on average only 13-fold, indicating that passive DNA demethylation by 5hmC generation is not efficient in many flanking contexts. The CXXC domain of DNMT1 has a moderate flanking sequence dependent contribution to HM/UM specificity during DNA association to DNMT1, but not if DNMT1 methylates long DNA molecules in processive methylation mode. Comparison of genomic methylation patterns from mouse ES cell lines with various deletions of DNMTs and TETs with our data revealed that the UM specificity profile is most related to cellular methylation patterns, indicating that de novo methylation activity of DNMT1 shapes the DNA methylome in these cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA/chemistry , DNA Methylation , DNA Modification Methylases/genetics , Epigenesis, Genetic
2.
J Biol Chem ; 299(6): 104796, 2023 06.
Article in English | MEDLINE | ID: mdl-37150325

ABSTRACT

Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q, and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as a tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to three methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In Molecular Dynamics simulations, we determined key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Lysine , Methylation , Neoplasms , Humans , Histones/chemistry , Histones/metabolism , Lysine/chemistry , Lysine/metabolism , Neoplasms/enzymology , Neoplasms/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mutation
3.
J Biol Chem ; 298(10): 102462, 2022 10.
Article in English | MEDLINE | ID: mdl-36067881

ABSTRACT

Specific DNA methylation at CpG and non-CpG sites is essential for chromatin regulation. The DNA methyltransferase DNMT3A interacts with target sites surrounded by variable DNA sequences with its TRD and RD loops, but the functional necessity of these interactions is unclear. We investigated CpG and non-CpG methylation in a randomized sequence context using WT DNMT3A and several DNMT3A variants containing mutations at DNA-interacting residues. Our data revealed that the flanking sequence of target sites between the -2 and up to the +8 position modulates methylation rates >100-fold. Non-CpG methylation flanking preferences were even stronger and favor C(+1). R836 and N838 in concert mediate recognition of the CpG guanine. R836 changes its conformation in a flanking sequence-dependent manner and either contacts the CpG guanine or the +1/+2 flank, thereby coupling the interaction with both sequence elements. R836 suppresses activity at CNT sites but supports methylation of CAC substrates, the preferred target for non-CpG methylation of DNMT3A in cells. N838 helps to balance this effect and prevent the preference for C(+1) from becoming too strong. Surprisingly, we found L883 reduces DNMT3A activity despite being highly conserved in evolution. However, mutations at L883 disrupt the DNMT3A-specific DNA interactions of the RD loop, leading to altered flanking sequence preferences. Similar effects occur after the R882H mutation in cancer cells. Our data reveal that DNMT3A forms flexible and interdependent interaction networks with the CpG guanine and flanking residues that ensure recognition of the CpG and efficient methylation of the cytosine in contexts of variable flanking sequences.


Subject(s)
DNA Methylation , DNA Methyltransferase 3A , CpG Islands , DNA/chemistry , DNA/metabolism , DNA Modification Methylases/genetics , Guanine , Mutation
4.
Nucleic Acids Res ; 49(1): 158-176, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33300025

ABSTRACT

Chromatin properties are regulated by complex networks of epigenome modifications. Currently, it is unclear how these modifications interact and if they control downstream effects such as gene expression. We employed promiscuous chromatin binding of a zinc finger fused catalytic domain of DNMT3A to introduce DNA methylation in HEK293 cells at many CpG islands (CGIs) and systematically investigated the dynamics of the introduced DNA methylation and the consequent changes of the epigenome network. We observed efficient methylation at thousands of CGIs, but it was unstable at about 90% of them, highlighting the power of genome-wide molecular processes that protect CGIs against DNA methylation. Partially stable methylation was observed at about 1000 CGIs, which showed enrichment in H3K27me3. Globally, the introduced DNA methylation strongly correlated with a decrease in gene expression indicating a direct effect. Similarly, global but transient reductions in H3K4me3 and H3K27ac were observed after DNA methylation but no changes were found for H3K9me3 and H3K36me3. Our data provide a global and time-resolved view on the network of epigenome modifications, their connections with DNA methylation and the responses triggered by artificial DNA methylation revealing a direct repressive effect of DNA methylation in CGIs on H3K4me3, histone acetylation, and gene expression.


Subject(s)
CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Gene Editing , Gene Expression Regulation/genetics , Histone Code , Acetylation , Catalytic Domain/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Genome , HEK293 Cells , Humans , Lysine/chemistry , Protein Binding , Protein Processing, Post-Translational , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Zinc Fingers/genetics
5.
Nucleic Acids Res ; 49(14): 8294-8308, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34289056

ABSTRACT

DNMT3A/3L heterotetramers contain two active centers binding CpG sites at 12 bp distance, however their interaction with DNA not containing this feature is unclear. Using randomized substrates, we observed preferential co-methylation of CpG sites with 6, 9 and 12 bp spacing by DNMT3A and DNMT3A/3L. Co-methylation was favored by AT bases between the 12 bp spaced CpG sites consistent with their increased bending flexibility. SFM analyses of DNMT3A/3L complexes bound to CpG sites with 12 bp spacing revealed either single heterotetramers inducing 40° DNA bending as observed in the X-ray structure, or two heterotetramers bound side-by-side to the DNA yielding 80° bending. SFM data of DNMT3A/3L bound to CpG sites spaced by 6 and 9 bp revealed binding of two heterotetramers and 100° DNA bending. Modeling showed that for 6 bp distance between CpG sites, two DNMT3A/3L heterotetramers could bind side-by-side on the DNA similarly as for 12 bp distance, but with each CpG bound by a different heterotetramer. For 9 bp spacing our model invokes a tetramer swap of the bound DNA. These additional DNA interaction modes explain how DNMT3A and DNMT3A/3L overcome their structural preference for CpG sites with 12 bp spacing during the methylation of natural DNA.


Subject(s)
CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA/genetics , Binding Sites/genetics , DNA/ultrastructure , DNA (Cytosine-5-)-Methyltransferases/ultrastructure , DNA Methyltransferase 3A , DNA Modification Methylases/genetics , DNA Modification Methylases/ultrastructure , Humans , Protein Domains/genetics
6.
Nucleic Acids Res ; 48(20): 11495-11509, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33105482

ABSTRACT

DNA methyltransferases interact with their CpG target sites in the context of variable flanking sequences. We investigated DNA methylation by the human DNMT3B catalytic domain using substrate pools containing CpX target sites in randomized flanking context and identified combined effects of CpG recognition and flanking sequence interaction together with complex contact networks involved in balancing the interaction with different flanking sites. DNA methylation rates were more affected by flanking sequences at non-CpG than at CpG sites. We show that T775 has an essential dynamic role in the catalytic mechanism of DNMT3B. Moreover, we identify six amino acid residues in the DNA-binding interface of DNMT3B (N652, N656, N658, K777, N779, and R823), which are involved in the equalization of methylation rates of CpG sites in favored and disfavored sequence contexts by forming compensatory interactions to the flanking residues including a CpG specific contact to an A at the +1 flanking site. Non-CpG flanking preferences of DNMT3B are highly correlated with non-CpG methylation patterns in human cells. Comparison of the flanking sequence preferences of human and mouse DNMT3B revealed subtle differences suggesting a co-evolution of flanking sequence preferences and cellular DNMT targets.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Base Sequence , Catalytic Domain , CpG Islands , DNA/chemistry , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Humans , Protein Binding , DNA Methyltransferase 3B
7.
Nucleic Acids Res ; 47(21): 11355-11367, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31620784

ABSTRACT

Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.


Subject(s)
5' Flanking Region/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Mutation, Missense , Amino Acid Substitution , Arginine/genetics , Binding Sites/genetics , Catalytic Domain , CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methyltransferase 3A , HCT116 Cells , Histidine/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , Substrate Specificity/genetics
8.
Int J Mol Sci ; 21(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941101

ABSTRACT

Epigenome editing is a promising technology, potentially allowing the stable reprogramming of gene expression profiles without alteration of the DNA sequence. Targeted DNA methylation has been successfully documented by many groups for silencing selected genes, but recent publications have raised concerns regarding its specificity. In the current work, we developed new EpiEditors for programmable DNA methylation in cells with a high efficiency and improved specificity. First, we demonstrated that the catalytically deactivated Cas9 protein (dCas9)-SunTag scaffold, which has been used earlier for signal amplification, can be combined with the DNMT3A-DNMT3L single-chain effector domain, allowing for a strong methylation at the target genomic locus. We demonstrated that off-target activity of this system is mainly due to untargeted freely diffusing DNMT3A-DNMT3L subunits. Therefore, we generated several DNMT3A-DNMT3L variants containing mutations in the DNMT3A part, which reduced their endogenous DNA binding. We analyzed the genome-wide DNA methylation of selected variants and confirmed a striking reduction of untargeted methylation, most pronounced for the R887E mutant. For all potential applications of targeted DNA methylation, the efficiency and specificity of the treatment are the key factors. By developing highly active targeted methylation systems with strongly improved specificity, our work contributes to future applications of this approach.


Subject(s)
Cellular Reprogramming Techniques , DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Gene Expression Regulation , Protein Engineering , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Genome-Wide Association Study , HEK293 Cells , Humans , Protein Domains
9.
Adv Exp Med Biol ; 978: 409-424, 2017.
Article in English | MEDLINE | ID: mdl-28523558

ABSTRACT

Epigenome editing aims for an introduction or removal of chromatin marks at a defined genomic region using artificial EpiEffectors resulting in a modulation of the activity of the targeted functional DNA elements. Rationally designed EpiEffectors consist of a targeting DNA-binding module (such as a zinc finger protein, TAL effector, or CRISPR/Cas complex) and usually, but not exclusively, a catalytic domain of a chromatin-modifying enzyme. Epigenome editing opens a completely new strategy for basic research of the central nervous system and causal treatment of psychiatric and neurological diseases, because rewriting of epigenetic information can lead to the direct and durable control of the expression of disease-associated genes. Here, we review current advances in the design of locus- and allele-specific DNA-binding modules, approaches for spatial, and temporal control of EpiEffectors and discuss some examples of existing and propose new potential therapeutic strategies based on epigenome editing for treatment of neurodegenerative and psychiatric diseases. These include the targeted silencing of disease-associated genes or activation of neuroprotective genes which may be applied in Alzheimer's and Parkinson's diseases or the control of addiction and depression. Moreover, we discuss allele-specific epigenome editing as novel therapeutic approach for imprinting disorders, Huntington's disease and Rett syndrome.


Subject(s)
Brain/metabolism , Epigenesis, Genetic/genetics , Gene Editing/methods , Genome, Human , CRISPR-Cas Systems , Cell Line , Chromatin Assembly and Disassembly , Gene Expression Regulation/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Mental Disorders/genetics , Mental Disorders/therapy , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Optogenetics/methods , Transcription Activator-Like Effectors/genetics , Zinc Fingers/genetics
10.
J Biol Chem ; 289(7): 4106-15, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24368767

ABSTRACT

The ubiquitin-like, containing PHD and RING finger domains protein 1 (UHRF1) is essential for maintenance DNA methylation by DNA methyltransferase 1 (DNMT1). UHRF1 has been shown to recruit DNMT1 to replicated DNA by the ability of its SET and RING-associated (SRA) domain to bind to hemimethylated DNA. Here, we demonstrate that UHRF1 also increases the activity of DNMT1 by almost 5-fold. This stimulation is mediated by a direct interaction of both proteins through the SRA domain of UHRF1 and the replication focus targeting sequence domain of DNMT1, and it does not require DNA binding by the SRA domain. Disruption of the interaction between DNMT1 and UHRF1 by replacement of key residues in the replication focus targeting sequence domain led to a strong reduction of DNMT1 stimulation. Additionally, the interaction with UHRF1 increased the specificity of DNMT1 for methylation of hemimethylated CpG sites. These findings show that apart from the targeting of DNMT1 to the replicated DNA UHRF1 increases the activity and specificity of DNMT1, thus exerting a multifaceted influence on the maintenance of DNA methylation.


Subject(s)
CpG Islands/physiology , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methylation/physiology , DNA Replication/physiology , DNA/chemistry , Nuclear Proteins/chemistry , Allosteric Regulation/physiology , Animals , CCAAT-Enhancer-Binding Proteins , DNA/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Ubiquitin-Protein Ligases
11.
Chembiochem ; 15(5): 743-8, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24532244

ABSTRACT

The N-terminal regulatory part of DNA methyltransferase 1 (Dnmt1) contains a replication foci targeting sequence (RFTS) domain, which is involved in the recruitment of Dnmt1 to replication forks. The RFTS domain has been observed in a crystal structure to bind to the catalytic domain of the enzyme and block its catalytic centre. Removal of the RFTS domain led to activation of Dnmt1, thus suggesting an autoinhibitory role of this domain. Here, we destabilised the interaction of the RFTS domain with the catalytic domain by site-directed mutagenesis and purified the corresponding Dnmt1 variants. Our data show that these mutations resulted in an up to fourfold increase in Dnmt1 methylation activity in vitro. Activation of Dnmt1 was not accompanied by a change in its preference for methylation of hemimethylated CpG sites. We also show that the Dnmt1 E572R/D575R variant has a higher DNA methylation activity in human cells after transfection into HCT116 cells, which are hypomorphic for Dnmt1. Our findings strongly support the autoinhibitory role of the RFTS domain, and indicate that it contributes to the regulation of Dnmt1 activity in cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Catalytic Domain , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methylation , Enzyme Activation , Humans , Models, Molecular , Point Mutation , Substrate Specificity
12.
Methods Mol Biol ; 2842: 179-192, 2024.
Article in English | MEDLINE | ID: mdl-39012596

ABSTRACT

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.


Subject(s)
Alleles , CRISPR-Cas Systems , DNA Methylation , Epigenome , Gene Editing , Humans , Gene Editing/methods , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , Epigenomics/methods , Epigenesis, Genetic
13.
Methods Mol Biol ; 2842: 405-418, 2024.
Article in English | MEDLINE | ID: mdl-39012608

ABSTRACT

DNA methylation is an important epigenetic modification that regulates chromatin structure and the cell-type-specific expression of genes. The association of aberrant DNA methylation with many diseases, as well as the increasing interest in modifying the methylation mark in a directed manner at genomic sites using epigenome editing for research and therapeutic purposes, increases the need for easy and efficient DNA methylation analysis methods. The standard approach to analyze DNA methylation with a single-cytosine resolution is bisulfite conversion of DNA followed by next-generation sequencing (NGS). In this chapter, we describe a robust, powerful, and cost-efficient protocol for the amplification of target regions from bisulfite-converted DNA, followed by a second PCR step to generate libraries for Illumina NGS. In the two consecutive PCR steps, first, barcodes are added to individual amplicons, and in the second PCR, indices and Illumina adapters are added to the samples. Finally, we describe a detailed bioinformatics approach to extract DNA methylation levels of the target regions from the sequencing data. Combining barcodes with indices enables a high level of multiplexing allowing to sequence multiple pooled samples in the same sequencing run. Therefore, this method is a robust, accurate, quantitative, and cheap approach for the readout of DNA methylation patterns at defined genomic regions.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , Sulfites , Sulfites/chemistry , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , Humans , DNA/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods , Epigenesis, Genetic , Epigenomics/methods
14.
Mob DNA ; 15(1): 6, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570859

ABSTRACT

BACKGROUND: Repeat elements (REs) play important roles for cell function in health and disease. However, RE enrichment analysis in short-read high-throughput sequencing (HTS) data, such as ChIP-seq, is a challenging task. RESULTS: Here, we present RepEnTools, a software package for genome-wide RE enrichment analysis of ChIP-seq and similar chromatin pulldown experiments. Our analysis package bundles together various software with carefully chosen and validated settings to provide a complete solution for RE analysis, starting from raw input files to tabular and graphical outputs. RepEnTools implementations are easily accessible even with minimal IT skills (Galaxy/UNIX). To demonstrate the performance of RepEnTools, we analysed chromatin pulldown data by the human UHRF1 TTD protein domain and discovered enrichment of TTD binding on young primate and hominid specific polymorphic repeats (SVA, L1PA1/L1HS) overlapping known enhancers and decorated with H3K4me1-K9me2/3 modifications. We corroborated these new bioinformatic findings with experimental data by qPCR assays using newly developed primate and hominid specific qPCR assays which complement similar research tools. Finally, we analysed mouse UHRF1 ChIP-seq data with RepEnTools and showed that the endogenous mUHRF1 protein colocalizes with H3K4me1-H3K9me3 on promoters of REs which were silenced by UHRF1. These new data suggest a functional role for UHRF1 in silencing of REs that is mediated by TTD binding to the H3K4me1-K9me3 double mark and conserved in two mammalian species. CONCLUSIONS: RepEnTools improves the previously available programmes for RE enrichment analysis in chromatin pulldown studies by leveraging new tools, enhancing accessibility and adding some key functions. RepEnTools can analyse RE enrichment rapidly, efficiently, and accurately, providing the community with an up-to-date, reliable and accessible tool for this important type of analysis.

15.
Genes (Basel) ; 15(1)2024 01 08.
Article in English | MEDLINE | ID: mdl-38254969

ABSTRACT

DNA methylation is critically involved in the regulation of chromatin states and cell-type-specific gene expression. The exclusive expression of imprinted genes from either the maternal or the paternal allele is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). Aberrant DNA hyper- or hypomethylation at the ICR1 of the H19/IGF2 imprinting locus is characteristic for the imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), respectively. In this paper, we performed epigenome editing to induce targeted DNA demethylation at ICR1 in HEK293 cells using dCas9-SunTag and the catalytic domain of TET1. 5-methylcytosine (5mC) levels at the target locus were reduced up to 90% and, 27 days after transient transfection, >60% demethylation was still observed. Consistent with the stable demethylation of CTCF-binding sites within the ICR1, the occupancy of the DNA methylation-sensitive insulator CTCF protein increased by >2-fold throughout the 27 days. Additionally, the H19 expression was increased by 2-fold stably, while IGF2 was repressed though only transiently. Our data illustrate the ability of epigenome editing to implement long-term changes in DNA methylation at imprinting control regions after a single transient treatment, potentially paving the way for therapeutic epigenome editing approaches in the treatment of imprinting disorders.


Subject(s)
DNA Demethylation , Imprinting Disorders , Humans , Catalytic Domain , Epigenome , HEK293 Cells , Alleles , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins , Insulin-Like Growth Factor II/genetics
16.
Commun Biol ; 7(1): 582, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755427

ABSTRACT

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Retroelements , Animals , Retroelements/genetics , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , CpG Islands , Male
17.
Commun Biol ; 7(1): 286, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454140

ABSTRACT

Through its involvement in gene transcription and heterochromatin formation, DNA methylation regulates how cells interact with their environment. Nevertheless, the extracellular signaling cues that modulate the distribution of this central chromatin modification are largely unclear. DNA methylation is highly abundant at repetitive elements, but its investigation in live cells has been complicated by methodological challenges. Utilizing a CRISPR/dCas9 biosensor that reads DNA methylation of human α-satellite repeats in live cells, we here uncover a signaling pathway linking the chromatin and transcriptional state of repetitive elements to epithelial adherens junction integrity. Specifically, we find that in confluent breast epithelial cell monolayers, α-satellite repeat methylation is reduced by comparison to low density cultures. This is coupled with increased transcriptional activity at repeats. Through comprehensive perturbation experiments, we identify the junctional protein E-cadherin, which links to the actin cytoskeleton, as a central molecular player for signal relay into the nucleus. Furthermore, we find that this pathway is impaired in cancer cells that lack E-cadherin and are not contact-inhibited. This suggests that the molecular connection between cell density and repetitive element methylation could play a role in the maintenance of epithelial tissue homeostasis.


Subject(s)
Adherens Junctions , DNA Methylation , Humans , Adherens Junctions/genetics , Adherens Junctions/metabolism , Cadherins/genetics , Cadherins/metabolism , Signal Transduction , Chromatin/metabolism
18.
Cell Rep Methods ; 4(4): 100739, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38554702

ABSTRACT

Dynamic changes in the epigenome at defined genomic loci play crucial roles during cellular differentiation and disease development. Here, we developed dual-color bimolecular anchor detector (BiAD) sensors for high-sensitivity readout of locus-specific epigenome modifications by fluorescence microscopy. Our BiAD sensors comprise an sgRNA/dCas9 complex as anchor and double chromatin reader domains as detector modules, both fused to complementary parts of a split IFP2.0 fluorophore, enabling its reconstitution upon binding of both parts in close proximity. In addition, a YPet fluorophore is recruited to the sgRNA to mark the genomic locus of interest. With these dual-color BiAD sensors, we detected H3K9me2/3 and DNA methylation and their dynamic changes upon RNAi or inhibitor treatment with high sensitivity at endogenous genomic regions. Furthermore, we showcased locus-specific H3K36me2/3 readout as well as H3K27me3 and H3K9me2/3 enrichment on the inactive X chromosome, highlighting the broad applicability of our dual-color BiAD sensors for single-cell epigenome studies.


Subject(s)
DNA Methylation , Epigenome , Histones , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Histones/metabolism , Histones/genetics , Epigenesis, Genetic , Genetic Loci , Chromatin/metabolism , Chromatin/genetics , Biosensing Techniques/methods , Color , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
19.
Nat Commun ; 15(1): 2960, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580649

ABSTRACT

DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and genetics experiments establish that UHRF1, besides activating DNMT1, interacts with DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles that contribute importantly to DNA methylation homeostasis; these findings have practical implications for epigenetics in health and disease.


Subject(s)
DNA Methylation , Neoplasms , Humans , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Chromatin , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
Methods Mol Biol ; 2577: 177-188, 2023.
Article in English | MEDLINE | ID: mdl-36173573

ABSTRACT

Epigenome editing is a powerful approach for the establishment of a chromatin environment with desired properties at a selected genomic locus, which is used to influence the transcription of target genes and to study properties and functions of gene regulatory elements. Targeted DNA methylation is one of the most often used types of epigenome editing, which typically aims for gene silencing by methylation of gene promoters. Here, we describe the design principles of EpiEditors for targeted DNA methylation and provide step-by-step guidelines for the realization of this approach. We focus on the dCas9 protein as the state-of-the-art DNA targeting module fused to 10×SunTag as the most frequently used system for editing enhancement. Further, we discuss different flavors of DNA methyltransferase modules used for this purpose including the most specific variants developed recently. Finally, we explain the principles of gRNA selection, outline the setup of the cell culture experiments, and briefly introduce the available options for the downstream DNA methylation data analysis.


Subject(s)
DNA Methylation , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Chromatin , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Modification Methylases/genetics , Epigenesis, Genetic , Gene Editing , Methyltransferases/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL