Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 172(5): 924-936.e11, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474920

ABSTRACT

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.


Subject(s)
Developmental Disabilities/genetics , Genetic Predisposition to Disease , Haploinsufficiency/genetics , Mutation/genetics , RNA-Binding Proteins/genetics , Seizures/genetics , Adolescent , Adult , Age of Onset , Aged, 80 and over , Animals , Base Sequence , Child , Child, Preschool , Developmental Disabilities/diagnostic imaging , Evolution, Molecular , Female , Gene Deletion , HEK293 Cells , Humans , Infant , Male , Mice , Middle Aged , Mutation, Missense/genetics , Neurons/metabolism , Neurons/pathology , Pedigree , Protein Stability , Seizures/diagnostic imaging
2.
Am J Hum Genet ; 108(1): 186-193, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417887

ABSTRACT

POLR3B encodes the second-largest catalytic subunit of RNA polymerase III, an enzyme involved in transcription. Bi-allelic pathogenic variants in POLR3B are a well-established cause of hypomyelinating leukodystrophy. We describe six unrelated individuals with de novo missense variants in POLR3B and a clinical presentation substantially different from POLR3-related leukodystrophy. These individuals had afferent ataxia, spasticity, variable intellectual disability and epilepsy, and predominantly demyelinating sensory motor peripheral neuropathy. Protein modeling and proteomic analysis revealed a distinct mechanism of pathogenicity; the de novo POLR3B variants caused aberrant association of individual enzyme subunits rather than affecting overall enzyme assembly or stability. We expand the spectrum of disorders associated with pathogenic variants in POLR3B to include a de novo heterozygous POLR3B-related disorder.


Subject(s)
Ataxia/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , RNA Polymerase III/genetics , Adolescent , Adult , Cerebellar Ataxia/genetics , Child , Child, Preschool , Female , Genes, Recessive/genetics , Heterozygote , Humans , Male , Mutation, Missense/genetics , Proteomics/methods , Young Adult
3.
Am J Hum Genet ; 102(2): 309-320, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29394990

ABSTRACT

Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.


Subject(s)
Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Genetic Heterogeneity , Muscular Atrophy/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Noonan Syndrome/genetics , cdc42 GTP-Binding Protein/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Adolescent , Adult , Child , Child, Preschool , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Female , Gene Expression , Humans , Infant , Male , Models, Molecular , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Noonan Syndrome/metabolism , Noonan Syndrome/pathology , Phenotype , Protein Structure, Secondary , Severity of Illness Index , cdc42 GTP-Binding Protein/chemistry , cdc42 GTP-Binding Protein/metabolism
5.
Am J Hum Genet ; 101(2): 267-273, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777933

ABSTRACT

Ribosomal RNA (rRNA) is transcribed from rDNA by RNA polymerase I (Pol I) to produce the 45S precursor of the 28S, 5.8S, and 18S rRNA components of the ribosome. Two transcription factors have been defined for Pol I in mammals, the selectivity factor SL1, and the upstream binding transcription factor (UBF), which interacts with the upstream control element to facilitate the assembly of the transcription initiation complex including SL1 and Pol I. In seven unrelated affected individuals, all suffering from developmental regression starting at 2.5-7 years, we identified a heterozygous variant, c.628G>A in UBTF, encoding p.Glu210Lys in UBF, which occurred de novo in all cases. While the levels of UBF, Ser388 phosphorylated UBF, and other Pol I-related components (POLR1E, TAF1A, and TAF1C) remained unchanged in cells of an affected individual, the variant conferred gain of function to UBF, manifesting by markedly increased UBF binding to the rDNA promoter and to the 5'- external transcribed spacer. This was associated with significantly increased 18S expression, and enlarged nucleoli which were reduced in number per cell. The data link neurodegeneration in childhood with altered rDNA chromatin status and rRNA metabolism.


Subject(s)
Brain Diseases/genetics , Cell Nucleolus/pathology , Neurodegenerative Diseases/genetics , Pol1 Transcription Initiation Complex Proteins/genetics , RNA, Ribosomal, 18S/biosynthesis , Adolescent , Adult , Atrophy/genetics , Brain/pathology , Brain Diseases/pathology , Child , Chromatin/metabolism , DNA-Binding Proteins/genetics , Female , Humans , Male , Neurodegenerative Diseases/pathology , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Young Adult
6.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27939640

ABSTRACT

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromatin/metabolism , Histones/metabolism , Intellectual Disability/genetics , Mutation , Nuclear Proteins/genetics , Acetylation , Adolescent , Alleles , Animals , Carrier Proteins/genetics , Child , Chromatin/chemistry , DNA-Binding Proteins , Developmental Disabilities/genetics , Face/abnormalities , Female , Histone Acetyltransferases/genetics , Humans , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Hypotonia/genetics , Syndrome
7.
Am J Hum Genet ; 99(3): 711-719, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27545680

ABSTRACT

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.


Subject(s)
Brain/embryology , Brain/metabolism , DNA-Binding Proteins/genetics , Genes, Essential/genetics , Intellectual Disability/genetics , Minor Histocompatibility Antigens/genetics , Mutation/genetics , RNA Splicing/genetics , Animals , Brain/abnormalities , Brain/pathology , DNA-Binding Proteins/analysis , DNA-Binding Proteins/metabolism , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Developmental Disabilities/physiopathology , Eye Abnormalities/genetics , Female , Haploinsufficiency/genetics , Head/abnormalities , Heterozygote , Humans , Intellectual Disability/pathology , Intellectual Disability/physiopathology , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Minor Histocompatibility Antigens/analysis , Minor Histocompatibility Antigens/metabolism , Pedigree , RNA, Messenger/analysis , Spine/abnormalities , Syndrome , Zebrafish/abnormalities , Zebrafish/embryology , Zebrafish/genetics
8.
J Med Genet ; 55(8): 561-566, 2018 08.
Article in English | MEDLINE | ID: mdl-28866611

ABSTRACT

BACKGROUND: The list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism. OBJECTIVES: To explore whether variants in CHD1 are associated with a human phenotype. METHODS: We used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts. RESULTS: Here we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1. CONCLUSIONS: Our results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Developmental Disabilities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation, Missense , Child , Child, Preschool , DNA Helicases/chemistry , DNA-Binding Proteins/chemistry , Developmental Disabilities/diagnosis , Facies , Female , Fibroblasts/metabolism , Genetic Association Studies/methods , Histones/metabolism , Humans , Infant , Models, Molecular , Phenotype , Protein Conformation , Structure-Activity Relationship
9.
Am J Med Genet A ; 173(1): 213-216, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27865048

ABSTRACT

Neuroligins are post-synaptic, cellular adhesion molecules implicated in synaptic formation and function. NLGN2 is strongly linked to inhibitory, GABAergic signaling and is crucial for maintaining the excitation-inhibition balance in the brain. Disruption of the excitation-inhibition balance is associated with neuropsychiatric disease. In animal models, altered NLGN2 expression causes anxiety, developmental delay, motor discoordination, social impairment, aggression, and sensory processing defects. In humans, mutations in NLGN3 and NLGN4 are linked to autism and schizophrenia; NLGN2 missense variants are implicated in schizophrenia. Copy number variants encompassing NLGN2 on 17p13.1 are associated with autism, intellectual disability, metabolic syndrome, diabetes, and dysmorphic features, but an isolated NLGN2 nonsense variant has not yet been described in humans. Here, we describe a 15-year-old male with severe anxiety, obsessive-compulsive behaviors, developmental delay, autism, obesity, macrocephaly, and some dysmorphic features. Exome sequencing identified a heterozygous, de novo, c.441C>A p.(Tyr147Ter) variant in NLGN2 that is predicted to cause loss of normal protein function. This is the first report of an NLGN2 nonsense variant in humans, adding to the accumulating evidence that links synaptic proteins with a spectrum of neurodevelopmental phenotypes. © 2016 Wiley Periodicals, Inc.


Subject(s)
Anxiety/genetics , Autistic Disorder/genetics , Cell Adhesion Molecules, Neuronal/genetics , Codon, Nonsense , Hyperphagia/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Obesity/genetics , Adolescent , Alleles , Anxiety/diagnosis , Autistic Disorder/diagnosis , Biomarkers , Exome , Fragile X Mental Retardation Protein/genetics , Genetic Association Studies , Genotype , High-Throughput Nucleotide Sequencing , Humans , Hyperphagia/diagnosis , In Situ Hybridization, Fluorescence , Intellectual Disability/diagnosis , Male , Neuropsychological Tests , Obesity/diagnosis , Syndrome
10.
Hum Genet ; 135(7): 699-705, 2016 07.
Article in English | MEDLINE | ID: mdl-27048600

ABSTRACT

Whole exome sequencing (WES) can be used to efficiently identify de novo genetic variants associated with genetically heterogeneous conditions including intellectual disabilities. We have performed WES for 4102 (1847 female; 2255 male) intellectual disability/developmental delay cases and we report five patients with a neurodevelopmental disorder associated with developmental delay, intellectual disability, behavioral problems, hypotonia, speech problems, microcephaly, pachygyria and dysmorphic features in whom we have identified de novo missense and canonical splice site mutations in CSNK2A1, the gene encoding CK2α, the catalytic subunit of protein kinase CK2, a ubiquitous serine/threonine kinase composed of two regulatory (ß) and two catalytic (α and/or α') subunits. Somatic mutations in CSNK2A1 have been implicated in various cancers; however, this is the first study to describe a human condition associated with germline mutations in any of the CK2 subunits.


Subject(s)
Body Dysmorphic Disorders/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Body Dysmorphic Disorders/physiopathology , Casein Kinase II/genetics , Child , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/pathology , Mutation , Neurodevelopmental Disorders/physiopathology
11.
Lancet Oncol ; 16(5): 569-82, 2015 May.
Article in English | MEDLINE | ID: mdl-25882982

ABSTRACT

BACKGROUND: Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours. METHODS: We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling. FINDINGS: Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes. INTERPRETATION: An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours. FUNDING: C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Genomics , Receptors, Notch/biosynthesis , Rhabdoid Tumor/genetics , Teratoma/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Child , Child, Preschool , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Infant , Male , Prognosis , Receptors, Notch/genetics , Rhabdoid Tumor/pathology , Risk Factors , Signal Transduction/genetics , Teratoma/pathology
12.
Hum Genet ; 133(3): 321-30, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24154661

ABSTRACT

Beckwith-Wiedemann syndrome (BWS), an overgrowth and tumor predisposition syndrome is clinically heterogeneous. Its variable presentation makes molecular diagnosis particularly important for appropriate counseling of patients with respect to embyronal tumor risk and recurrence risk. BWS is characterized by macrosomia, omphalocele, and macroglossia. Additional clinical features can include hemihyperplasia, embryonal tumors, umbilical hernia, and ear anomalies. BWS is etiologically heterogeneous arising from dysregulation of one or both of the chromosome 11p15.5 imprinting centers (IC) and/or imprinted growth regulatory genes on chromosome 11p15.5. Most BWS cases are sporadic and result from loss of maternal methylation at imprinting center 2 (IC2), gain of maternal methylation at imprinting center 1 (IC1) or paternal uniparental disomy (UPD). Heritable forms of BWS (15 %) have been attributed mainly to mutations in the growth suppressor gene CDKN1C, but have also infrequently been identified in patients with copy number variations (CNVs) in the chromosome 11p15.5 region. Four hundred and thirty-four unrelated BWS patients referred to the molecular diagnostic laboratory were tested by methylation-specific multiplex ligation-dependent probe amplification. Molecular alterations were detected in 167 patients, where 103 (62 %) showed loss of methylation at IC2, 23 (14 %) had gain of methylation at IC1, and 41 (25 %) showed changes at both ICs usually associated with paternal UPD. In each of the three groups, we identified patients in whom the abnormalities in the chromosome 11p15.5 region were due to CNVs. Surprisingly, 14 patients (9 %) demonstrated either deletions or duplications of the BWS critical region that were confirmed using comparative genomic hybridization array analysis. The majority of these CNVs were associated with a methylation change at IC1. Our results suggest that CNVs in the 11p15.5 region contribute significantly to the etiology of BWS. We highlight the importance of performing deletion/duplication testing in addition to methylation analysis in the molecular investigation of BWS to improve our understanding of the molecular basis of this disorder, and to provide accurate genetic counseling.


Subject(s)
Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Chromosomes, Human, Pair 11/genetics , DNA Copy Number Variations/genetics , Chromosome Deletion , Chromosomes, Human, Pair 4/genetics , Comparative Genomic Hybridization , Cyclin-Dependent Kinase Inhibitor p57/genetics , DNA Methylation , Female , Gene Rearrangement , Genomic Imprinting , Genotype , Humans , Male , Pedigree , Phenotype
13.
Genet Med ; 16(8): 625-32, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24556927

ABSTRACT

PURPOSE: The purpose of this study was to determine the molecular consequences of the variant c.3700 A>G in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a variant that has been predicted to cause a missense mutation in the CFTR protein (p.Ile1234Val). METHODS: Clinical assays of CFTR function were performed, and genomic DNA from patients homozygous for c.3700 A>G and their family members was sequenced. Total RNA was extracted from epithelial cells of the patients, transcribed into complementary DNA, and sequenced. CFTR complementary DNA clones containing the missense mutation p.Ile1234Val or a truncated exon 19 (p.Ile1234_Arg1239del) were constructed and heterologously expressed to test CFTR protein synthesis and processing. RESULTS: In vivo functional measurements revealed that the individuals homozygous for the variant c.3700 A>G exhibited defective CFTR function. We show that this mutation in exon 19 activates a cryptic donor splice site 18 bp upstream of the original donor splice site, resulting in deletion of six amino acids (r.3700_3717del; p.Ile1234_Arg1239del). This deletion, similar to p.Phe508del, causes a primary defect in folding and processing. Importantly, Lumacaftor (VX-809), currently in clinical trial for cystic fibrosis patients with the major cystic fibrosis-causing mutation, p.Phe508del, partially ameliorated the processing defect caused by p.Ile1234_Arg1239del. CONCLUSION: These studies highlight the need to verify molecular and clinical consequences of CFTR variants to define possible therapeutic strategies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Isoleucine/metabolism , Valine/metabolism , Adolescent , Adult , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Line , Cricetinae , Cystic Fibrosis/drug therapy , Exons , HEK293 Cells , Homozygote , Humans , Male , Mutation, Missense , Qatar , RNA Splicing
14.
Acta Neuropathol ; 128(6): 853-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25315281

ABSTRACT

Although telomeres are maintained in most cancers by telomerase activation, a subset of tumors utilize alternative lengthening of telomeres (ALT) to sustain self-renewal capacity. In order to study the prevalence and significance of ALT in childhood brain tumors we screened 517 pediatric brain tumors using the novel C-circle assay. We examined the association of ALT with alterations in genes found to segregate with specific histological phenotypes and with clinical outcome. ALT was detected almost exclusively in malignant tumors (p = 0.001). ALT was highly enriched in primitive neuroectodermal tumors (12 %), choroid plexus carcinomas (23 %) and high-grade gliomas (22 %). Furthermore, in contrast to adult gliomas, pediatric low grade gliomas which progressed to high-grade tumors did not exhibit the ALT phenotype. Somatic but not germline TP53 mutations were highly associated with ALT (p = 1.01 × 10(-8)). Of the other alterations examined, only ATRX point mutations and reduced expression were associated with the ALT phenotype (p = 0.0005). Interestingly, ALT attenuated the poor outcome conferred by TP53 mutations in specific pediatric brain tumors. Due to very poor prognosis, one year overall survival was quantified in malignant gliomas, while in children with choroid plexus carcinoma, five year overall survival was investigated. For children with TP53 mutant malignant gliomas, one year overall survival was 63 ± 12 and 23 ± 10 % for ALT positive and negative tumors, respectively (p = 0.03), while for children with TP53 mutant choroid plexus carcinomas, 5 years overall survival was 67 ± 19 and 27 ± 13 % for ALT positive and negative tumors, respectively (p = 0.07). These observations suggest that the presence of ALT is limited to a specific group of childhood brain cancers which harbor somatic TP53 mutations and may influence the outcome of these patients. Analysis of ALT may contribute to risk stratification and targeted therapies to improve outcome for these children.


Subject(s)
Brain Neoplasms/genetics , Carcinoma/genetics , Choroid Plexus Neoplasms/genetics , Glioma/genetics , Neuroectodermal Tumors, Primitive/genetics , Telomere , Tumor Suppressor Protein p53/genetics , Adolescent , Brain Neoplasms/physiopathology , Carcinoma/physiopathology , Choroid Plexus Neoplasms/physiopathology , Cohort Studies , DNA Helicases/genetics , Glioma/physiopathology , Humans , Kaplan-Meier Estimate , Mutation , Neoplasm Grading , Neuroectodermal Tumors, Primitive/physiopathology , Nuclear Proteins/genetics , Phenotype , Prognosis , Telomere/metabolism , X-linked Nuclear Protein
15.
Hum Genet ; 132(11): 1245-52, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23812740

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of right ventricular free wall myocardium and life-threatening ventricular arrhythmias. A missense mutation, c.1073C>T (p.S358L) in the transmembrane protein 43 (TMEM43) gene, has been genetically identified to cause ARVC type 5 in a founder population from Newfoundland. It is unclear whether this mutation occurs in other populations outside of this founder population or if other variants of TMEM43 are associated with ARVC disease. We sought to identify non-Newfoundland individuals with TMEM43 variants among patient samples sent for genetic assessment for possible ARVC. Of 195 unrelated individuals with suspected ARVC, mutation of desmosomal proteins was seen in 28 and the p.S358L TMEM43 mutation in six. We identified a de novo p.S358L mutation in a non-Newfoundland patient and five separate rare TMEM43 (four novel) sequence variants in non-Newfoundland patients, each occurring in an evolutionarily conserved amino acid. TMEM43 mutations occur outside of the founder population of the island of Newfoundland where it was originally described. TMEM43 sequencing should be incorporated into clinical genetic testing for ARVC patients.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/genetics , Membrane Proteins/genetics , Mutation, Missense , Arrhythmias, Cardiac/genetics , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Desmosomes/genetics , Desmosomes/metabolism , Founder Effect , Genetic Predisposition to Disease , Heart Ventricles/physiopathology , Heterozygote , Humans , Membrane Proteins/metabolism , Newfoundland and Labrador , Pedigree , Sequence Analysis, DNA
16.
Am J Hum Genet ; 87(5): 631-42, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21056402

ABSTRACT

DNA copy-number variations (CNVs) underlie many neuropsychiatric conditions, but they have been less studied in cancer. We report the association of a 17p13.1 CNV, childhood-onset developmental delay (DD), and cancer. Through a screen of over 4000 patients with diverse diagnoses, we identified eight probands harboring microdeletions at TP53 (17p13.1). We used a purpose-built high-resolution array with 93.75% breakpoint accuracy to fine map these microdeletions. Four patients were found to have a common phenotype including DD, hypotonia, and hand and foot abnormalities, constituting a unique syndrome. Notably, these patients were not affected with cancer. Moreover, none of the TP53-deletion patients affected with cancer (n = 4) had neurocognitive impairments. DD patients have larger deletions, which encompass but do not disrupt TP53, whereas cancer-affected patients harbor CNVs with at least one breakpoint within TP53. Most 17p13.1 deletions arise by Alu-mediated nonallelic homologous recombination. Furthermore, we identify a critical genomic region associated with DD and containing six underexpressed genes. We conclude that, although they overlap, 17p13.1 CNVs are associated with distinct phenotypes depending on the position of the breakpoint with respect to TP53. Further, detailed characterization of breakpoints revealed a common formation signature. Future studies should consider whether other loci in the genome also give rise to phenotypically distinct disorders by means of a common mechanism, resulting in a similar formation signature.


Subject(s)
Neoplasms/genetics , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 17 , DNA Copy Number Variations , Developmental Disabilities/genetics , Genes, p53 , Humans , Phenotype , Syndrome
18.
Am J Med Genet A ; 158A(6): 1388-94, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22585446

ABSTRACT

Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with variability in clinical manifestations and molecular causes. In most cases, patients with BWS have normal development. Cases with developmental delay are usually attributed to neonatal hypoglycemia or chromosome abnormalities involving copy number variation for genes beyond the critical BWS region at 11p15.5. Brain abnormalities have not previously been recognized within the BWS phenotypic spectrum. We report on seven cases of BWS associated with posterior fossa abnormalities. Of these, two cases presented with Blake's pouch cyst, two with Dandy-Walker variant (DWV; hypoplasia of the inferior part of the vermis), one with Dandy-Walker malformation (DWM) and one with a complex of DWM, dysgenesis of the corpus callosum and brain stem abnormality. In all these cases, molecular findings involved the centromeric imprinted domain on chromosome locus 11p15.5, which includes imprinting center 2 (IC2) and the imprinted growth suppressor gene, CDKN1C. Three cases had loss of methylation at IC2, two had CDKN1C mutations, and one had loss of methylation at IC2 and a microdeletion. In one case no mutation/methylation abnormality was detected. These findings together with previously reported correlations suggest that genes in imprinted domain 2 at 11p15.5 are involved in normal midline development of several organs including the brain. Our data suggest that brain malformations may present as a finding within the BWS phenotype when the molecular etiology involves imprinted domain 2. Brain imaging may be useful in identifying such malformations in individuals with BWS and neurodevelopmental issues.


Subject(s)
Beckwith-Wiedemann Syndrome/diagnosis , Brain/abnormalities , Beckwith-Wiedemann Syndrome/complications , Beckwith-Wiedemann Syndrome/genetics , Brain/pathology , Child, Preschool , Chromosomes, Human, Pair 11 , Cyclin-Dependent Kinase Inhibitor p57/genetics , DNA Methylation , Fatal Outcome , Female , Gene Deletion , Genomic Imprinting , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Mutation
19.
Muscle Nerve ; 45(5): 752-5, 2012 May.
Article in English | MEDLINE | ID: mdl-22499106

ABSTRACT

INTRODUCTION: Congenital muscular dystrophies (CMD) with hypoglycosylated α-dystroglycan due to POMT1 mutations are associated with clinical phenotypes that vary in severity. METHODS: We describe a patient with congenital hypotonia, generalized weakness, elevated creatine kinase (CK), and normal brain imaging. RESULTS: Histochemical analysis of the index case's muscle showed deficiency of glycosylated α-dystroglycan and secondary merosin deficiency. Genetic testing revealed a novel mutation in exon 20 of the POMT1 gene. CONCLUSIONS: Our patient's milder form of CMD adds to the emerging evidence of an expanding phenotype caused by POMT1 mutations. The histopathological findings of the muscle biopsy in this case support the need for careful clinical, genetic, and histochemical diagnostic interpretation.


Subject(s)
Mannosyltransferases/genetics , Muscular Dystrophies/genetics , Mutation , Brain/pathology , Creatine Kinase/blood , Dystroglycans/metabolism , Electromyography , Genetic Testing , Glycosylation , Humans , Infant , Laminin/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Phenotype
20.
Am J Med Genet A ; 152A(7): 1808-11, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20583174

ABSTRACT

Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is an autosomal recessive disorder affecting mitochondrial fatty acid oxidation due to mutations in the HADHA gene. We report on a 22-month-old child who was identified on expanded newborn screening with an abnormal acylcarnitine pattern and increased C14OH. Molecular analysis showed that the child was homozygous for the common mutation, c.1526G > C (p.Glu510Gln) in the HADHA gene. Carrier testing on the parental samples revealed that the father was heterozygous for the mutation whereas the mother did not carry the mutation. Short tandem repeat testing with markers covering both short and long arms of chromosome 2 showed that the child has paternal uniparental isodisomy. We highlight the importance of parental testing in cases of homozygosity in autosomal recessive disorders and its impact on genetic counseling of the family.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/deficiency , Chromosomes, Human, Pair 2/genetics , Fathers , Uniparental Disomy/genetics , 3-Hydroxyacyl CoA Dehydrogenases/genetics , Base Sequence , Chromosome Segregation/genetics , DNA Mutational Analysis , Female , Genotype , Humans , Infant , Infant, Newborn , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase , Male , Molecular Sequence Data , Pedigree , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL