Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(8): 2041-6, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26848135

ABSTRACT

The development of four-dimensional ultrafast electron microscopy (4D UEM) has enabled not only observations of the ultrafast dynamics of photon-matter interactions at the atomic scale with ultrafast resolution in image, diffraction, and energy space, but photon-electron interactions in the field of nanoplasmonics and nanophotonics also have been captured by the related technique of photon-induced near-field electron microscopy (PINEM) in image and energy space. Here we report a further extension in the ongoing development of PINEM using a focused, nanometer-scale, electron beam in diffraction space for measurements of infrared-light-induced PINEM. The energy resolution in diffraction mode is unprecedented, reaching 0.63 eV under the 200-keV electron beam illumination, and separated peaks of the PINEM electron-energy spectrum induced by infrared light of wavelength 1,038 nm (photon energy 1.2 eV) have been well resolved for the first time, to our knowledge. In a comparison with excitation by green (519-nm) pulses, similar first-order PINEM peak amplitudes were obtained for optical fluence differing by a factor of more than 60 at the interface of copper metal and vacuum. Under high fluence, the nonlinear regime of IR PINEM was observed, and its spatial dependence was studied. In combination with PINEM temporal gating and low-fluence infrared excitation, the PINEM diffraction method paves the way for studies of structural dynamics in reciprocal space and energy space with high temporal resolution.

2.
Proc Natl Acad Sci U S A ; 112(42): 12944-9, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26438835

ABSTRACT

Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.

3.
Proc Natl Acad Sci U S A ; 111(29): 10479-84, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-25006261

ABSTRACT

Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.

4.
Proc Natl Acad Sci U S A ; 110(23): 9277-82, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23690572

ABSTRACT

Enhanced image contrast has been seen at graphene-layered steps a few nanometers in height by means of photon-induced near-field electron microscopy (PINEM) using synchronous femtosecond pulses of light and electrons. The observed steps are formed by the edges of graphene strips lying on the surface of a graphene substrate, where the strips are hundreds of nanometers in width and many micrometers in length. PINEM measurements reflect the interaction of imaging electrons and induced (near) electric fields at the steps, and this leads to a much higher contrast than that achieved in bright-field transmission electron microscopy imaging of the same strips. Theory and numerical simulations support the experimental PINEM findings and elucidate the nature of the electric field at the steps formed by the graphene layers. These results extend the range of applications of the experimental PINEM methodology, which has previously been demonstrated for spherical, cylindrical, and triangular nanostructures, to shapes of high aspect ratio (rectangular strips), as well as into the regime of atomic layer thicknesses.


Subject(s)
Electrons , Graphite/chemistry , Microscopy, Electron/methods , Nanostructures/ultrastructure , Photons , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL