Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Publication year range
1.
Cell ; 184(5): 1330-1347.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636130

ABSTRACT

Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.


Subject(s)
Bone Resorption/pathology , Osteoclasts/pathology , RANK Ligand/metabolism , Animals , Apoptosis , Bone Resorption/metabolism , Cell Fusion , Cells, Cultured , Humans , Macrophages/cytology , Mice , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Osteoclasts/metabolism , Signal Transduction
3.
J Cell Sci ; 131(11)2018 06 05.
Article in English | MEDLINE | ID: mdl-29871956

ABSTRACT

Macrophage cell fusion and multinucleation are fundamental processes in the formation of multinucleated giant cells (MGCs) in chronic inflammatory disease and osteoclasts in the regulation of bone mass. However, this basic cell phenomenon is poorly understood despite its pathophysiological relevance. Granulomas containing multinucleated giant cells are seen in a wide variety of complex inflammatory disorders, as well as in infectious diseases. Dysregulation of osteoclastic bone resorption underlies the pathogenesis of osteoporosis and malignant osteolytic bone disease. Recent reports have shown that the formation of multinucleated giant cells and osteoclast fusion display a common molecular signature, suggesting shared genetic determinants. In this Review, we describe the background of cell-cell fusion and the similar origin of macrophages and osteoclasts. We specifically focus on the common pathways involved in osteoclast and MGC fusion. We also highlight potential approaches that could help to unravel the core mechanisms underlying bone and granulomatous disorders in humans.


Subject(s)
Giant Cells/metabolism , Macrophages/metabolism , Osteoclasts/metabolism , Signal Transduction , Animals , Cell Fusion , Granuloma , Humans
4.
Proc Natl Acad Sci U S A ; 114(52): E11323-E11332, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229863

ABSTRACT

Thyroid hormone (TH) and TH receptors (TRs) α and ß act by binding to TH response elements (TREs) in regulatory regions of target genes. This nuclear signaling is established as the canonical or type 1 pathway for TH action. Nevertheless, TRs also rapidly activate intracellular second-messenger signaling pathways independently of gene expression (noncanonical or type 3 TR signaling). To test the physiological relevance of noncanonical TR signaling, we generated knockin mice with a mutation in the TR DNA-binding domain that abrogates binding to DNA and leads to complete loss of canonical TH action. We show that several important physiological TH effects are preserved despite the disruption of DNA binding of TRα and TRß, most notably heart rate, body temperature, blood glucose, and triglyceride concentration, all of which were regulated by noncanonical TR signaling. Additionally, we confirm that TRE-binding-defective TRß leads to disruption of the hypothalamic-pituitary-thyroid axis with resistance to TH, while mutation of TRα causes a severe delay in skeletal development, thus demonstrating tissue- and TR isoform-specific canonical signaling. These findings provide in vivo evidence that noncanonical TR signaling exerts physiologically important cardiometabolic effects that are distinct from canonical actions. These data challenge the current paradigm that in vivo physiological TH action is mediated exclusively via regulation of gene transcription at the nuclear level.


Subject(s)
Hypothalamo-Hypophyseal System/metabolism , Myocardium/metabolism , Pituitary-Adrenal System/metabolism , Receptors, Thyroid Hormone/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Animals , Gene Knock-In Techniques , Mice , Mice, Knockout , Receptors, Thyroid Hormone/genetics , Thyroid Hormones/genetics
5.
Blood ; 129(26): 3452-3464, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28515094

ABSTRACT

Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM.


Subject(s)
Bone Density/drug effects , Bone Morphogenetic Proteins/antagonists & inhibitors , Fractures, Bone/prevention & control , Osteocytes/chemistry , Osteogenesis/drug effects , Adaptor Proteins, Signal Transducing , Animals , Antibodies/pharmacology , Antibodies/therapeutic use , Bone Morphogenetic Proteins/immunology , Cell Line, Tumor , Diphosphonates/therapeutic use , Genetic Markers/immunology , Humans , Imidazoles/therapeutic use , Mice , Multiple Myeloma/complications , Tumor Cells, Cultured , Zoledronic Acid
6.
PLoS Genet ; 8(8): e1002858, 2012.
Article in English | MEDLINE | ID: mdl-22876197

ABSTRACT

Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.


Subject(s)
Bone Density/genetics , Bone and Bones/anatomy & histology , High-Throughput Screening Assays/methods , Osteoporosis/genetics , Animals , Biomechanical Phenomena , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Bone and Bones/physiology , Chromosome Mapping , Gene Deletion , Mice , Mice, Knockout , Microradiography , Multimodal Imaging , Organ Specificity , Osteoporosis/diagnostic imaging , Osteoporosis/pathology , Phenotype , Positron-Emission Tomography , Tensile Strength , Tomography, X-Ray Computed
7.
Biochim Biophys Acta ; 1830(7): 3979-86, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22634735

ABSTRACT

BACKGROUND: Thyroid hormones regulate skeletal development, acquisition of peak bone mass and adult bone maintenance. Abnormal thyroid status during childhood disrupts bone maturation and linear growth, while in adulthood it results in altered bone remodeling and an increased risk of fracture SCOPE OF REVIEW: This review considers the cellular effects and molecular mechanisms of thyroid hormone action in the skeleton. Human clinical and population data are discussed in relation to the skeletal phenotypes of a series of genetically modified mouse models of disrupted thyroid hormone signaling. MAJOR CONCLUSIONS: Euthyroid status is essential for normal bone development and maintenance. Major thyroid hormone actions in skeletal cells are mediated by thyroid hormone receptor α (TRα) and result in anabolic responses during growth and development but catabolic effects in adulthood. These homeostatic responses to thyroid hormone are locally regulated in individual skeletal cell types by the relative activities of the type 2 and 3 iodothyronine deiodinases, which control the supply of the active thyroid hormone 3,5,3'-L-triiodothyronine (T3) to its receptor. GENERAL SIGNIFICANCE: Population studies indicate that both thyroid hormone deficiency and excess are associated with an increased risk of fracture. Understanding the cellular and molecular basis of T3 action in skeletal cells will lead to the identification of new targets to regulate bone turnover and mineralization in the prevention and treatment of osteoporosis. This article is part of a Special Issue entitled Thyroid hormone signaling.


Subject(s)
Bone Development/physiology , Bone and Bones/physiology , Thyroid Hormones/physiology , Animals , Bone Development/genetics , Bone and Bones/metabolism , Humans , Signal Transduction , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors alpha/physiology , Thyroid Hormones/genetics , Thyroid Hormones/metabolism
8.
Am J Physiol Endocrinol Metab ; 307(6): E527-37, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25117405

ABSTRACT

Thyrostimulin, a putative glycoprotein hormone, comprises the subunits GPA2 and GPB5 and activates the TSH receptor (TSHR). The observation that proinflammatory cytokines stimulate GPB5 transcription suggested a role for thyrostimulin in the pathogenesis of nonthyroidal illness syndrome (NTIS). In the present study, we induced acute inflammation by LPS administration to GPB5(-/-) and WT mice to evaluate the role of thyrostimulin in peripheral thyroid hormone metabolism during NTIS. In addition to serum thyroid hormone concentrations, we studied mRNA expression and activity of deiodinase types I, II, and III (D1, D2, and D3) in peripheral T3 target tissues, including liver, muscle, and white and brown adipose tissue (WAT and BAT), of which the latter three express the TSHR. LPS decreased serum free (f)T4 and fT3 indexes to a similar extent in GPB5(-/-) and WT mice. Serum reverse (r)T3 did not change following LPS administration. LPS also induced significant alterations in tissue D1, D2, and D3 mRNA and activity levels, but only the LPS-induced increase in WAT D2 mRNA expression differed between GPB5(-/-) and WT mice. In conclusion, lacking GPB5 during acute illness does not affect the LPS-induced decrease of serum thyroid hormones while resulting in subtle changes in tissue D2 expression that are unlikely to be mediated via the TSHR.


Subject(s)
Glycoproteins/deficiency , Inflammation/pathology , 3T3-L1 Cells , Adipose Tissue, Brown/pathology , Adipose Tissue, White/pathology , Animals , CHO Cells , Cell Line , Charcoal/chemistry , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Glycoproteins/genetics , Glycoproteins/physiology , Humans , Inflammation/chemically induced , Inflammation/metabolism , Iodide Peroxidase/metabolism , Lipopolysaccharides/pharmacology , Liver/pathology , Mice , Mice, Knockout , Muscle, Skeletal/pathology , Peptide Hormones/genetics , Peptide Hormones/physiology , Thyroid Hormones/metabolism
9.
Blood ; 117(3): 1053-60, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21088133

ABSTRACT

Osteogenesis imperfecta (OI or brittle bone disease) is a disorder of connective tissues caused by mutations in the collagen genes. We previously showed that intrauterine transplantation of human blood fetal stem/stromal cells in OI mice (oim) resulted in a significant reduction of bone fracture. This work examines the cellular mechanisms and mechanical bone modifications underlying these therapeutic effects, particularly examining the direct effects of donor collagen expression on bone material properties. In this study, we found an 84% reduction in femoral fractures in transplanted oim mice. Fetal blood stem/stromal cells engrafted in bones, differentiated into mature osteoblasts, expressed osteocalcin, and produced COL1a2 protein, which is absent in oim mice. The presence of normal collagen decreased hydroxyproline content in bones, altered the apatite crystal structure, increased the bone matrix stiffness, and reduced bone brittleness. In conclusion, expression of normal collagen from mature osteoblast of donor origin significantly decreased bone brittleness by improving the mechanical integrity of the bone at the molecular, tissue, and whole bone levels.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Fetal Stem Cells/transplantation , Fractures, Bone/prevention & control , Osteogenesis Imperfecta/surgery , Animals , Biomechanical Phenomena , Blotting, Western , Cell Differentiation , Collagen/metabolism , Collagen Type I , Disease Models, Animal , Female , Femoral Fractures/prevention & control , Femur/metabolism , Femur/physiopathology , Fetal Stem Cells/cytology , Fetal Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis Imperfecta/genetics , Pregnancy , Principal Component Analysis , Reverse Transcriptase Polymerase Chain Reaction , Spectrum Analysis, Raman , Transplantation, Heterologous
10.
J Immunol ; 186(5): 2910-7, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21278350

ABSTRACT

Invariant NKT (iNKT) cells modulate innate and adaptive immune responses through activation of myeloid dendritic cells and macrophages and via enhanced clonogenicity, differentiation, and egress of their shared myeloid progenitors. Because these same progenitors give rise to osteoclasts (OCs), which also mediate the egress of hematopoietic progenitors and orchestrate bone remodeling, we hypothesized that iNKT cells would extend their myeloid cell regulatory role to the development and function of OCs. In this study, we report that selective activation of iNKT cells by α-galactosylceramide causes myeloid cell egress, enhances OC progenitor and precursor development, modifies the intramedullary kinetics of mature OCs, and enhances their resorptive activity. OC progenitor activity is positively regulated by TNF-α and negatively regulated by IFN-γ, but is IL-4 and IL-17 independent. These data demonstrate a novel role of iNKT cells that couples osteoclastogenesis with myeloid cell egress in conditions of immune activation.


Subject(s)
Cell Differentiation/immunology , Lymphocyte Activation/immunology , Natural Killer T-Cells/cytology , Natural Killer T-Cells/immunology , Osteoclasts/immunology , Osteoclasts/metabolism , Animals , Cell Movement/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Down-Regulation/immunology , Interferon-gamma/physiology , Macrophage Colony-Stimulating Factor/physiology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/cytology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Natural Killer T-Cells/metabolism , Osteoclasts/cytology , RANK Ligand/physiology , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Tumor Necrosis Factor-alpha/physiology , Up-Regulation/immunology
11.
Proc Natl Acad Sci U S A ; 107(16): 7604-9, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20368437

ABSTRACT

Hypothyroidism and thyrotoxicosis are each associated with an increased risk of fracture. Although thyroxine (T4) is the predominant circulating thyroid hormone, target cell responses are determined by local intracellular availability of the active hormone 3,5,3'-L-triiodothyronine (T3), which is generated from T4 by the type 2 deiodinase enzyme (D2). To investigate the role of locally produced T3 in bone, we characterized mice deficient in D2 (D2KO) in which the serum T3 level is normal. Bones from adult D2KO mice have reduced toughness and are brittle, displaying an increased susceptibility to fracture. This phenotype is characterized by a 50% reduction in bone formation and a generalized increase in skeletal mineralization resulting from a local deficiency of T3 in osteoblasts. These data reveal an essential role for D2 in osteoblasts in the optimization of bone strength and mineralization.


Subject(s)
Bone and Bones/metabolism , Iodide Peroxidase/physiology , Osteoblasts/metabolism , Animals , Bone Density , Bone Resorption , Hypothyroidism/pathology , Iodide Peroxidase/metabolism , Mice , Mice, Knockout , Microscopy, Confocal/methods , Microscopy, Electron, Scanning/methods , Models, Biological , Phenotype , Stress, Mechanical , X-Ray Microtomography/methods , Iodothyronine Deiodinase Type II
12.
JCI Insight ; 8(12)2023 06 22.
Article in English | MEDLINE | ID: mdl-37345656

ABSTRACT

Hypochondroplasia (HCH) is a mild dwarfism caused by missense mutations in fibroblast growth factor receptor 3 (FGFR3), with the majority of cases resulting from a heterozygous p.Asn540Lys gain-of-function mutation. Here, we report the generation and characterization of the first mouse model (Fgfr3Asn534Lys/+) of HCH to our knowledge. Fgfr3Asn534Lys/+ mice exhibited progressive dwarfism and impairment of the synchondroses of the cranial base, resulting in defective formation of the foramen magnum. The appendicular and axial skeletons were both severely affected and we demonstrated an important role of FGFR3 in regulation of cortical and trabecular bone structure. Trabecular bone mineral density (BMD) of long bones and vertebral bodies was decreased, but cortical BMD increased with age in both tibiae and femurs. These results demonstrate that bones in Fgfr3Asn534Lys/+ mice, due to FGFR3 activation, exhibit some characteristics of osteoporosis. The present findings emphasize the detrimental effect of gain-of-function mutations in the Fgfr3 gene on long bone modeling during both developmental and aging processes, with potential implications for the management of elderly patients with hypochondroplasia and osteoporosis.


Subject(s)
Dwarfism , Osteoporosis , Receptor, Fibroblast Growth Factor, Type 3 , Animals , Mice , Calcification, Physiologic , Dwarfism/genetics , Gain of Function Mutation , Receptor, Fibroblast Growth Factor, Type 3/genetics
13.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37283649

ABSTRACT

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
Endocrinology ; 163(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34669927

ABSTRACT

Thyroid hormones (TH) are essential for skeletal development and adult bone homeostasis. Their bioavailability is determined by specific transporter proteins at the cell surface. The TH-specific transporter monocarboxylate transporter 8 (MCT8) was recently reported as a regulator of bone mass in mice. Given that high systemic triiodothyronine (T3) levels in Mct8 knockout (KO) mice are still able to cause trabecular bone loss, alternative TH transporters must substitute for MCT8 function in bone. In this study, we analyzed the skeletal phenotypes of male Oatp1c1 KO and Mct10 KO mice, which are euthyroid, and male Mct8/Oatp1c1 and Mct8/Mct10 double KO mice, which have elevated circulating T3 levels, to unravel the role of TH transport in bone. MicroCT analysis showed no significant trabecular bone changes in Oatp1c1 KO mice at 4 weeks and 16 weeks of age compared with wild-type littermate controls, whereas 16-week-old Mct8/Oatp1c1 double KO animals displayed trabecular bone loss. At 12 weeks, Mct10 KO mice, but not Mct8/Mct10 double KO mice, had decreased trabecular femoral bone volume with reduced osteoblast numbers. By contrast, lack of Mct10 in 24-week-old mice led to trabecular bone gain at the femur with increased osteoblast numbers and decreased osteoclast numbers whereas Mct8/Mct10 double KO did not alter bone mass. Neither Mct10 nor Mct8/Mct10 deletion affected vertebral bone structures at both ages. In vitro, osteoblast differentiation and activity were impaired by Mct10 and Mct8/Mct10-deficiency. These data demonstrate that MCT10, but not OATP1C1, is a site- and age-dependent regulator of bone mass and turnover in male mice.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Bone and Bones/metabolism , Animals , Biological Transport , Biomechanical Phenomena , Cancellous Bone/metabolism , Cell Differentiation , Femur/physiology , Homeostasis , Male , Mice , Mice, Knockout , Organic Cation Transport Proteins/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteocytes/cytology , Phenotype , Symporters/metabolism , Thyroid Gland/metabolism , Thyroid Hormones/metabolism , Triiodothyronine/metabolism , X-Ray Microtomography
15.
Nat Commun ; 12(1): 1309, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637762

ABSTRACT

Osteoarthritis causes pain and functional disability for over 500 million people worldwide. To develop disease-stratifying tools and modifying therapies, we need a better understanding of the molecular basis of the disease in relevant tissue and cell types. Here, we study primary cartilage and synovium from 115 patients with osteoarthritis to construct a deep molecular signature map of the disease. By integrating genetics with transcriptomics and proteomics, we discover molecular trait loci in each tissue type and omics level, identify likely effector genes for osteoarthritis-associated genetic signals and highlight high-value targets for drug development and repurposing. These findings provide insights into disease aetiopathology, and offer translational opportunities in response to the global clinical challenge of osteoarthritis.


Subject(s)
Genetic Predisposition to Disease/genetics , Osteoarthritis/genetics , Quantitative Trait Loci/genetics , Gene Expression Profiling , Gene Expression Regulation , Genome-Wide Association Study , Humans , Phenotype , Transcription Factors/genetics , Transcriptome
16.
Front Endocrinol (Lausanne) ; 12: 709711, 2021.
Article in English | MEDLINE | ID: mdl-34539568

ABSTRACT

Genetic disorders of the skeleton encompass a diverse group of bone diseases differing in clinical characteristics, severity, incidence and molecular etiology. Of particular interest are the monogenic rare bone mass disorders, with the underlying genetic defect contributing to either low or high bone mass phenotype. Extensive, deep phenotyping coupled with high-throughput, cost-effective genotyping is crucial in the characterization and diagnosis of affected individuals. Massive parallel sequencing efforts have been instrumental in the discovery of novel causal genes that merit functional validation using in vitro and ex vivo cell-based techniques, and in vivo models, mainly mice and zebrafish. These translational models also serve as an excellent platform for therapeutic discovery, bridging the gap between basic science research and the clinic. Altogether, genetic studies of monogenic rare bone mass disorders have broadened our knowledge on molecular signaling pathways coordinating bone development and metabolism, disease inheritance patterns, development of new and improved bone biomarkers, and identification of novel drug targets. In this comprehensive review we describe approaches to further enhance the innovative processes taking discoveries from clinic to bench, and then back to clinic in rare bone mass disorders. We highlight the importance of cross laboratory collaboration to perform functional validation in multiple model systems after identification of a novel disease gene. We describe the monogenic forms of rare low and high rare bone mass disorders known to date, provide a roadmap to unravel the genetic determinants of monogenic rare bone mass disorders using proper phenotyping and genotyping methods, and describe different genetic validation approaches paving the way for future treatments.


Subject(s)
Bone Density , Bone Diseases/genetics , Bone Diseases/pathology , Genes , Mutation , Animals , Bone Diseases/therapy , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Phenotype
17.
Nat Commun ; 12(1): 467, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33473114

ABSTRACT

Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease/genetics , Osteoarthritis/genetics , Animals , Bone and Bones/pathology , CRISPR-Cas Systems , Cartilage/pathology , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Models, Animal , Drug Discovery , Gene Editing , Gonadotropin-Releasing Hormone/genetics , Iodide Peroxidase , Mice , Mice, Knockout , Osteoarthritis/pathology , Osteoarthritis/surgery , Paired Box Transcription Factors/genetics , Phenotype , Iodothyronine Deiodinase Type II
18.
Front Endocrinol (Lausanne) ; 12: 720728, 2021.
Article in English | MEDLINE | ID: mdl-34925226

ABSTRACT

A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".


Subject(s)
Bone and Bones/metabolism , Genomics/methods , Musculoskeletal Physiological Phenomena/genetics , Animals , Bone and Bones/pathology , Gene Regulatory Networks/physiology , Humans , Mice , Models, Animal , Phenotype , Proteomics/methods , Zebrafish
19.
Nat Commun ; 12(1): 2444, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953184

ABSTRACT

Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.


Subject(s)
Bone Diseases/genetics , Homeostasis , Osteocytes/metabolism , Transcriptome , Age Factors , Animals , Bone Diseases/metabolism , Bone and Bones/metabolism , Computational Biology , Female , Humans , Male , Mice , Mice, Knockout , Osteocytes/cytology , Osteoporosis/genetics , Sequence Analysis, RNA , Sex Factors
20.
Nat Rev Endocrinol ; 16(3): 147-164, 2020 03.
Article in English | MEDLINE | ID: mdl-31974498

ABSTRACT

The development of the craniofacial skeleton relies on complex temporospatial organization of diverse cell types by key signalling molecules. Even minor disruptions to these processes can result in deleterious consequences for the structure and function of the skull. Thyroid hormone deficiency causes delayed craniofacial and tooth development, dysplastic facial features and delayed development of the ossicles in the middle ear. Thyroid hormone excess, by contrast, accelerates development of the skull and, in severe cases, might lead to craniosynostosis with neurological sequelae and facial hypoplasia. The pathogenesis of these important abnormalities remains poorly understood and underinvestigated. The orchestration of craniofacial development and regulation of suture and synchondrosis growth is dependent on several critical signalling pathways. The underlying mechanisms by which these key pathways regulate craniofacial growth and maturation are largely unclear, but studies of single-gene disorders resulting in craniofacial malformations have identified a number of critical signalling molecules and receptors. The craniofacial consequences resulting from gain-of-function and loss-of-function mutations affecting insulin-like growth factor 1, fibroblast growth factor receptor and WNT signalling are similar to the effects of altered thyroid status and mutations affecting thyroid hormone action, suggesting that these critical pathways interact in the regulation of craniofacial development.


Subject(s)
Craniofacial Abnormalities/metabolism , Thyroid Hormones/metabolism , Animals , Craniosynostoses/metabolism , Humans , Signal Transduction/physiology , Skull/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL