Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Plant Cell Environ ; 47(4): 1009-1022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37961842

ABSTRACT

Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris  egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.


Subject(s)
Butterflies , Mustard Plant , Animals , Mustard Plant/genetics , Butterflies/genetics , Plants , Chromosome Mapping
2.
BMC Plant Biol ; 22(1): 140, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331150

ABSTRACT

BACKGROUND: Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. RESULTS: A germplasm screening of 56 B. rapa accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 also contains an ortholog of LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. CONCLUSIONS: This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.


Subject(s)
Brassica rapa , Butterflies , Cell Death , Ovum/chemistry , Quantitative Trait Loci , Animals , Brassica rapa/genetics
3.
New Phytol ; 230(1): 341-353, 2021 04.
Article in English | MEDLINE | ID: mdl-33305360

ABSTRACT

Evolutionary arms-races between plants and insect herbivores have long been proposed to generate key innovations such as plant toxins and detoxification mechanisms that can drive diversification of the interacting species. A novel front-line of plant defence is the killing of herbivorous insect eggs. We test whether an egg-killing plant trait has an evolutionary basis in such a plant-insect arms-race. Within the crucifer family (Brassicaceae), some species express a hypersensitive response (HR)-like necrosis underneath butterfly eggs (Pieridae) that leads to eggs desiccating or falling off the plant. We studied the phylogenetic distribution of this trait, its egg-killing effect on and elicitation by butterflies, by screening 31 Brassicales species, and nine Pieridae species. We show a clade-specific induction of strong, egg-killing HR-like necrosis mainly in species of the Brassiceae tribe including Brassica crops and close relatives. The necrosis is strongly elicited by pierid butterflies that are specialists of crucifers. Furthermore, HR-like necrosis is linked to PR1 defence gene expression, accumulation of reactive oxygen species and cell death, eventually leading to egg-killing. Our findings suggest that the plants' egg-killing trait is a new front on the evolutionary arms-race between Brassicaceae and pierid butterflies beyond the well-studied plant toxins that have evolved against their caterpillars.


Subject(s)
Butterflies , Animals , Herbivory , Larva , Phylogeny
4.
Hortic Res ; 6: 38, 2019.
Article in English | MEDLINE | ID: mdl-30854213

ABSTRACT

Brassica species are characterized by their tremendous intraspecific diversity, exemplified by leafy vegetables, oilseeds, and crops with enlarged inflorescences or above ground storage organs. In contrast to potato tubers that are edible storage organs storing energy as starch and are the vegetative propagation modules, the storage organs of turnips, grown from true seed, are swollen hypocotyls with varying degrees of root and stem that mainly store glucose and fructose. To highlight their anatomical origin, we use the term "hypocotyl-tuber" for these turnip vegetative storage organs. We combined cytological, physiological, genetic and transcriptomic approaches, aiming to identify the initial stages, molecular pathways and regulatory genes for hypocotyl-tuber induction in turnips (B. rapa subsp. rapa). We first studied the development of the hypocotyl zone of turnip and Pak choi and found that 16 days after sowing (DAS) morphological changes occurred in the xylem which indicated the early tuberization stage. Tissue culture experiments showed a clear effect of auxin on hypocotyl-tuber growth. Differentially expressed genes between 1 and 6 weeks after sowing in turnip hypocotyls, located in genomic regions involved in tuber initiation and/or tuber growth defined by QTL and selective sweeps for tuber formation, were identified as candidate genes that were studied in more detail for their role in hypocotyl-tuber formation. This included a Bra-FLOR1 paralogue with increased expression 16 DAS, when the hypocotyl starts swelling, suggesting dual roles for duplicated flowering time genes in flowering and hypocotyl-tuber induction. Bra-CYP735A2 was identified for its possible role in tuber growth via trans-zeatin. Weigthed Co-expression Network Analysis (WGCNA) identified 59 modules of co-expressed genes. Bra-FLOR1 and Bra-CYP735A2 were grouped in a module that included several genes involved in carbohydrate transport and metabolism, cell-wall growth, auxin regulation and secondary metabolism that serve as starting points to illuminate the transcriptional regulation of hypocotyl-tuber formation and development.

SELECTION OF CITATIONS
SEARCH DETAIL