ABSTRACT
17ß-estradiol is a hormone that plays a vital role in human physiology. It acts through estrogen receptors, specifically estrogen receptor α and estrogen receptor ß, and its action is determined by the pulsatile secretion in the bloodstream. 17ß-estradiol affects cell proliferation, and dysregulation of 17ß-estradiol:estrogen receptor α signaling contribute to the development of breast cancer. Previous research on 17ß-estradiol:estrogen receptor α signaling has primarily used two-dimensional cell cultures, which do not fully recapitulate the complexity of tumors that exist in a three-dimensional environment and do not consider the pulsatile nature of this hormone. To address these limitations, we studied 17ß-estradiol:estrogen receptor α signaling in cell proliferation using both two-dimensional and three-dimensional breast cancer cell culture models under continuous and pulsatile stimulation conditions. Results revealed that breast cancer cells grown in an alginate-based three-dimensional matrix exhibited similar responsiveness to 17ß-estradiol compared with cells grown in conventional two-dimensional culture plates. 17ß-estradiol induced the expression of proteins containing estrogen response element in the three-dimensional model. The efficacy of the antiestrogen drugs fulvestrant (ICI182,280) and 4OH-tamoxifen was also demonstrated in the three-dimensional model. These results support the use of the three-dimensional culture model for studying tumor response to drugs and provide a more realistic microenvironment for such studies. Furthermore, the study revealed that a brief 5-min exposure to 17ß-estradiol triggered a physiological response comparable with continuous hormone exposure, suggesting that the cellular response to 17ß-estradiol is more important than the continuous presence of the hormone. In conclusion, the study demonstrates that the alginate-based three-dimensional culture model is suitable for studying the effects of 17ß-estradiol and antiestrogen drugs on breast cancer cells, offering a more realistic representation of tumor-microenvironment interactions. The results also highlight the importance of considering the physiological importance of the temporal dynamics in studying 17ß-estradiol signaling and cellular responses.
Subject(s)
Cell Proliferation , Estradiol , Estrogen Receptor alpha , Signal Transduction , Humans , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Cell Proliferation/drug effects , Signal Transduction/drug effects , Female , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , MCF-7 Cells , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques/methods , Fulvestrant/pharmacologyABSTRACT
Phthalates comprise a group of synthetic chemicals present in the environment because of their wide use as plasticizers and as additives in products for personal care. Among others, diethyl phthalate (DEP) is largely used in products for infants, children, and adults, in which its exposure has been correlated with an increased risk of breast cancer. The adverse health outcomes deriving from phthalate exposure have been associated with their activity as endocrine disruptors (EDCs) of the steroid and thyroid hormone signaling by affecting developmental and reproductive health, and even carcinogenicity. However, the estrogen disruptor activities of DEP are still controversial, and the mechanism at the root of the estrogenic-disrupting action of DEP remains to be clarified. Here, we evaluated the DEP mechanism of action on the activation status of estrogen receptor α (ERα) by analyzing the receptor's phosphorylation as well as both nuclear and extra-nuclear pathways triggered by the receptor to modulate the proliferation of breast cancer cells. Although DEP does not bind to ERα, our results suggest that this phthalate ester exerts multiple parallel interactions with ERα signaling and emphasize the importance to determine an appropriate battery of in vitro methods that will include specific molecular mechanisms involved in the endocrine disruption.