ABSTRACT
Methylene blue is a dye that is extensively used in the textile industry but it is a hazardous, carcinogenic, and mutagenic pollutant. Therefore, the treatment of wastewater containing methylene blue by photocatalytic degradation under visible light without using any sacrificial agent (H2O2) is an important method towards attaining an eco-friendly environment. Herein, the nanocomposite of Ag-doped TiO2 on WO3 nanoparticles (Ag@TiO2/WO3) was prepared by a modified sol-gel precipitation route, and their physicochemical properties were studied. The bandgap of Ag sensitized metal oxide nanocomposite in Ag@TiO2/WO3 was slightly reduced compared to the pristine titania due to the creation of interstitial energy states during colligation of titania and tungsten oxide. The ease of charge carrier transfers through the heterojunction of TiO2/WO3 increased the photocatalytic activity of the photocatalyst. Furthermore, in Ag@TiO2/WO3 the plasmonic Ag sensitization to the host semiconductor TiO2 has further boosted the rate of photocatalytic degradation because of the surface plasmon resonance (SPR) and hindrance of charge carrier recombination. Due to the synergistic effect of SPR and the presence of heterojunction in Ag@TiO2/WO3, the photocatalytic activity was found to be 25 times higher for Ag@TiO2/WO3 than that of commercial DP25 photocatalyst under visible light towards methylene blue degradation.
Subject(s)
Hydrogen Peroxide , Methylene Blue , Light , TitaniumABSTRACT
We furnish a comprehensive study on light-induced carrier generation due to the synergistic contribution of Au interband transition and graphene oxide (GO)/ZnO heterostructure. Plasmonic gold nanoparticles (Au_nps) are incorporated as a substructure sandwiched between GO and ZnO, assisting in additional photo-induced charge carrier generation. GO is prepared by a single-step plasma-enhanced chemical vapor deposition process. The GO/ZnO heterostructure having an active working area of 0.25 cm2 is created to unleash the pyroelectric property of ZnO, and subsequently, Au_np is introduced at the interface of GO/ZnO. Here, the interband transition of Au_np and its capability for charge carrier generation combined with the excitonic charge carrier generation of the highly crystalline non-centrosymmetric hexagonal wurtzite ZnO enhances the photoresponse. Furthermore, the interaction of Au_np with ZnO and its spatial electric field intensity distribution is demonstrated by finite difference time domain simulation which indicate toward an efficient carrier generation at the interface of Au_np and ZnO. The fabricated heterostructure has an active working wavelength in the UV-A region with the highest responsivity at 375 nm of the electromagnetic spectrum. The ultrafast response time (â¼29 µs) of the device is due to the pyro-phototronic effect of the GO/ZnO heterostructure enhanced by the interband transition of Au. In the comparative study of the Au_np-enriched GO/ZnO heterostructure device with a GO/ZnO device, the former shows better performance. Both the devices work in the self-powered mode as well as the photoconductive mode, but with a higher on-off current ratio in the photoconductive mode. Hence, this work helps in properly understanding photo-induced charge generation in a Au interband transition enriched GO/ZnO heterostructure.