Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 117(29): 17094-17103, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32611817

ABSTRACT

Declining ejaculate performance with male age is taxonomically widespread and has broad fitness consequences. Ejaculate success requires fully functional germline (sperm) and soma (seminal fluid) components. However, some aging theories predict that resources should be preferentially diverted to the germline at the expense of the soma, suggesting differential impacts of aging on sperm and seminal fluid and trade-offs between them or, more broadly, between reproduction and lifespan. While harmful effects of male age on sperm are well known, we do not know how much seminal fluid deteriorates in comparison. Moreover, given the predicted trade-offs, it remains unclear whether systemic lifespan-extending interventions could ameliorate the declining performance of the ejaculate as a whole. Here, we address these problems using Drosophila melanogaster. We demonstrate that seminal fluid deterioration contributes to male reproductive decline via mating-dependent mechanisms that include posttranslational modifications to seminal proteins and altered seminal proteome composition and transfer. Additionally, we find that sperm production declines chronologically with age, invariant to mating activity such that older multiply mated males become infertile principally via reduced sperm transfer and viability. Our data, therefore, support the idea that both germline and soma components of the ejaculate contribute to male reproductive aging but reveal a mismatch in their aging patterns. Our data do not generally support the idea that the germline is prioritized over soma, at least, within the ejaculate. Moreover, we find that lifespan-extending systemic down-regulation of insulin signaling results in improved late-life ejaculate performance, indicating simultaneous amelioration of both somatic and reproductive aging.


Subject(s)
Aging , Drosophila melanogaster , Seminal Plasma Proteins , Spermatozoa , Aging/genetics , Aging/physiology , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Fertility/genetics , Fertility/physiology , Infertility, Male/genetics , Infertility, Male/physiopathology , Male , Proteome/analysis , Proteome/genetics , Proteome/physiology , Seminal Plasma Proteins/analysis , Seminal Plasma Proteins/physiology , Sexual Behavior, Animal/physiology , Spermatozoa/chemistry , Spermatozoa/physiology
2.
Proc Biol Sci ; 288(1947): 20203053, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33726599

ABSTRACT

Aggressive behaviours are among the most striking displayed by animals, and aggression strongly impacts fitness in many species. Aggression varies plastically in response to the social environment, but we lack direct tests of how aggression evolves in response to intra-sexual competition. We investigated how aggression in both sexes evolves in response to the competitive environment, using populations of Drosophila melanogaster that we experimentally evolved under female-biased, equal, and male-biased sex ratios. We found that after evolution in a female-biased environment-with less male competition for mates-males fought less often on food patches, although the total frequency and duration of aggressive behaviour did not change. In females, evolution in a female-biased environment-where female competition for resources is higher-resulted in more frequent aggressive interactions among mated females, along with a greater increase in post-mating aggression. These changes in female aggression could not be attributed solely to evolution either in females or in male stimulation of female aggression, suggesting that coevolved interactions between the sexes determine female post-mating aggression. We found evidence consistent with a positive genetic correlation for aggression between males and females, suggesting a shared genetic basis. This study demonstrates the experimental evolution of a behaviour strongly linked to fitness, and the potential for the social environment to shape the evolution of contest behaviours.


Subject(s)
Aggression , Sex Ratio , Animals , Biological Evolution , Drosophila melanogaster/genetics , Female , Male , Reproduction , Sexual Behavior, Animal
3.
Evolution ; 77(3): 776-788, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36648108

ABSTRACT

Stronger condition-dependence in sexually selected traits is well-documented, but how this relationship is established remains unknown. Moreover, resource availability can shape responses to sexual selection, but resource effects on the relationship between sexual selection and condition-dependence are also unknown. In this study, we directly test the hypotheses that sexual selection drives the evolution of stronger-condition-dependence and that resource availability affects the outcome, by evolving fruit flies (Drosophila melanogaster) under relatively strong or weak sexual selection (through varied sex ratios) and at resource-poor or resource-rich adult diets. We then experimentally manipulated condition via developmental diet and assessed condition-dependence in adult morphology, behavior, and reproduction. We observed stronger condition-dependence in female size in male-biased populations and in female ovariole production in resource-limited populations. However, we found no evidence that male condition-dependence increased in response to sexual selection, or that responses depended on resource levels. These results offer no support for the hypotheses that sexual selection increases male condition-dependence or that sexual selection's influence on condition-dependence is influenced by resource availability. Our study is, to our knowledge, the first experimental test of these hypotheses. If the results we report are general, then sexual selection's influence on the evolution of condition-dependence may be less important than predicted.


Subject(s)
Drosophila melanogaster , Sexual Selection , Animals , Male , Female , Drosophila melanogaster/physiology , Biological Evolution , Selection, Genetic , Drosophila , Sex Characteristics
4.
PLoS One ; 15(4): e0229633, 2020.
Article in English | MEDLINE | ID: mdl-32348317

ABSTRACT

Aggression between individuals of the same sex is almost ubiquitous across the animal kingdom. Winners of intrasexual contests often garner considerable fitness benefits, through greater access to mates, food, or social dominance. In females, aggression is often tightly linked to reproduction, with females displaying increases in aggressive behavior when mated, gestating or lactating, or when protecting dependent offspring. In the fruit fly, Drosophila melanogaster, females spend twice as long fighting over food after mating as when they are virgins. However, it is unknown when this increase in aggression begins or whether it is consistent across genotypes. Here we show that aggression in females increases between 2 to 4 hours after mating and remains elevated for at least a week after a single mating. In addition, this increase in aggression 24 hours after mating is consistent across three diverse genotypes, suggesting this may be a universal response to mating in the species. We also report here the first use of automated tracking and classification software to study female aggression in Drosophila and assess its accuracy for this behavior. Dissecting the genetic diversity and temporal patterns of female aggression assists us in better understanding its generality and adaptive function, and will facilitate the identification of its underlying mechanisms.


Subject(s)
Aggression/physiology , Drosophila melanogaster/genetics , Reproduction/genetics , Sexual Behavior, Animal/physiology , Animals , Drosophila melanogaster/physiology , Female , Genetic Variation/genetics , Male , Reproduction/physiology , Social Dominance
5.
Funct Ecol ; 32(11): 2542-2552, 2018 Nov.
Article in English | MEDLINE | ID: mdl-31007331

ABSTRACT

Competition over access to resources early in life can influence development, and, in turn, affect competitive phenotypes in reproductive adults. Theory predicts that competition between adult females should be especially context-dependent, because of constraints imposed by high costs of reproduction. However, the potential impact of developmental environments on competition in adult females remains little understood.In Drosophila melanogaster, the developmental environment can strongly influence adult condition, and prime adult competitive behaviour. In this species, female-female aggression is dependent on reproductive state and increases after mating due to the receipt of sperm and seminal fluid components. However, the effects of the developmental environment on adult female aggression, and any potential interactions with mating status, are unknown.To address this problem, we first raised flies at low and high larval density, which altered competition over limited resources, produced large and small adult females, respectively, and potentially primed them for differing levels of adult competition. We then fought the resulting adult females, either as virgins, or after receiving aggression-stimulating ejaculates at mating, to test for interacting effects.We found, as expected, that mating elevated contest duration. However, this mating-induced boost in aggression was strongly exacerbated for high density (small) females. Low density (large) females won more contests overall, but were not more successful in fights after mating. In contrast, mating increased the fighting success in females raised in high density environments.Our results suggest that individuals who experience competitive, resource-limited, rearing conditions are more sensitive to the aggression-stimulating effects of the male ejaculate. This finding highlights the importance of the developmental environment in mediating adult social interactions and provides support for the theory that female-female aggression should be highly context-dependent. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13214/suppinfo is available for this article.

6.
Nat Ecol Evol ; 1(6): 0154, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28580431

ABSTRACT

Female aggression towards other females is associated with reproduction in many taxa, and traditionally thought to be related to the protection or provisioning of offspring, such as through increased resource acquisition. However, the underlying reproductive factors causing aggressive behaviour in females remain unknown. Here we show that female aggression in the fruit fly Drosophila melanogaster is strongly stimulated by the receipt of sperm at mating, and in part by an associated seminal fluid protein, the sex peptide. We further show that the post-mating increase in female aggression is decoupled from the costs of egg production and from post-mating decreases in sexual receptivity. Our results suggest that male ejaculates can have a surprisingly direct influence on aggression in recipient females. Male ejaculate traits thus influence the female social competitive environment with potentially far-reaching ecological and evolutionary consequences.

7.
Ecol Evol ; 5(9): 1826-36, 2015 May.
Article in English | MEDLINE | ID: mdl-26140199

ABSTRACT

In contests among males, body condition is often the key determinant of a successful outcome, with fighting ability signaled by so-called armaments, that is, exaggerated, condition-dependent traits. However, it is not known whether condition and exaggerated traits function in the same way in females. Here, we manipulated adult condition by varying larval nutrition in the stalk-eyed fly, Teleopsis dalmanni, a species in which eyespan is exaggerated in both sexes, and we measured the outcome of contests between females of similar or different body condition and relative eyespan. We found that females in higher condition, with both larger bodies and eyespan, won a higher proportion of encounters when competing against rivals of lower condition. However, when females were of equal condition, neither eyespan nor body length had an effect on the outcome of a contest. An analysis of previously published data revealed a similar pattern in males: individuals with large relative eyespan did not win significantly more encounters when competing with individuals of a similar body size. Contrary to expectations, and to previous findings in males, there was no clear effect of differences in body size or eyespan affecting contest duration in females. Taken together, our findings suggest that although eyespan can provide an honest indicator of condition, large eyespans provide no additional benefit to either sex in intrasexual aggressive encounters; body size is instead the most important factor.

8.
Evolution ; 68(2): 368-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24111624

ABSTRACT

The consequences of sex-specific selection for patterns of diversification remain poorly known. Because male secondary sexual traits are typically costly to express, and both costs and benefits are likely to depend on ambient environment and individual condition, such traits may be expected to diversify via changes in reaction norms as well as the scaling of trait size with body size (static allometry). We investigated morphological diversification within two species of Australian neriid flies (Telostylinus angusticollis, Telostylinus lineolatus) by rearing larvae from several populations on larval diets varying sixfold in nutrient concentration. Mean body size varied among populations of T. angusticollis, but body size reaction norms did not vary within either species. However, we detected diversification of reaction norms for body shape in males and females within both species. Moreover, unlike females, males also diversified in static allometry slope and reaction norms for static allometry slope of sexual and nonsexual traits. Our findings reveal qualitative sex differences in patterns of morphological diversification, whereby shape-size relationships diversify extensively in males, but remain conserved in females despite extensive evolution of trait means. Our results highlight the importance of incorporating plasticity and allometry in studies of adaptation and diversification.


Subject(s)
Diptera/genetics , Gene-Environment Interaction , Genetic Variation , Animals , Body Size/genetics , Diet , Diptera/anatomy & histology , Diptera/growth & development , Evolution, Molecular , Female , Genotype , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL