ABSTRACT
OBJECTIVE: The involvement of HBV DNA integration in promoting hepatocarcinogenesis and the extent to which the intrahepatic HBV reservoir modulates liver disease progression remains poorly understood. We examined the intrahepatic HBV reservoir, the occurrence of HBV DNA integration and its impact on the hepatocyte transcriptome in hepatitis B 'e' antigen (HBeAg)-negative chronic hepatitis B (CHB). DESIGN: Liver tissue from 84 HBeAg-negative patients with CHB with low (n=12), moderate (n=25) and high (n=47) serum HBV DNA was analysed. Covalently closed circular DNA (cccDNA), pregenomic RNA (pgRNA) were evaluated by quantitative PCR, whole exome and transcriptome sequencing was performed by Illumina, and the burden of HBV DNA integrations was evaluated by digital droplet PCR. RESULTS: Patients with low and moderate serum HBV DNA displayed comparable intrahepatic cccDNA and pgRNA, significantly lower than in patients with high HBV DNA, while hepatitis B core-related antigen correlated strongly with the intrahepatic HBV reservoir, reflecting cccDNA quantity. Whole exome integration was detected in a significant number of patients (55.6%, 14.3% and 25% in high, moderate and low viraemic patients, respectively), at a frequency ranging from 0.5 to 157 integrations/1000 hepatocytes. Hepatitis B surface antigen >5000 IU/mL predicted integration within the exome and these integrations localised in genes involved in hepatocarcinogenesis, regulation of lipid/drug metabolism and antiviral/inflammatory responses. Transcript levels of specific genes, including the proto-oncogene hRAS, were higher in patients with HBV DNA integration, supporting an underlying oncogenic risk in patients with low-level to moderate-level viraemia. CONCLUSIONS: HBV DNA integration occurs across all HBeAg-negative patients with CHB, including those with a limited HBV reservoir; localising in genes involved in carcinogenesis and altering the hepatocyte transcriptome.
Subject(s)
DNA, Viral/blood , DNA, Viral/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , Hepatocytes/virology , Adult , Biomarkers/blood , Female , Genotype , Hepatitis B e Antigens/blood , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Transcriptome , Viremia , Exome SequencingABSTRACT
The study was undertaken in order to provide a snapshot from real clinical practice of virological presentation and outcome of patients developing immunosuppression-driven HBV reactivation. Seventy patients with HBV reactivation were included (66.2% treated with rituximab, 10% with corticosteroids and 23.8% with other immunosuppressive drugs). Following HBV reactivation, patients received anti-HBV treatment for a median (IQR) follow-up of 31(13-47) months. At baseline-screening, 72.9% of patients were HBsAg-negative and 27.1% HBsAg-positive. About 71.4% had a diagnosis of biochemical reactivation [median (IQR) HBV DNA and ALT: 6.9 (5.4-7.8) log IU/mL and 359 (102-775) U/L]. Moreover, 10% of patients died from hepatic failure. Antiviral prophylaxis was documented in 57.9% and 15.7% of HBsAg-positive and HBsAg-negative patients at baseline-screening (median [IQR] prophylaxis duration: 24[15-33] and 25[17-36] months, respectively). Notably, HBV reactivation occurred 2-24 months after completing the recommended course of anti-HBV prophylaxis in 35.3% of patients. By analysing treatment outcome, the cumulative probability of ALT normalization and of virological suppression was 97% and 69%, respectively. Nevertheless, in patients negative to HBsAg at baseline-screening, only 27% returned to HBsAg-negative status during prolonged follow-up, suggesting the establishment of chronic infection. In conclusion, most patients received a diagnosis of HBV reactivation accompanied by high ALT and 10% died for hepatic failure, supporting the importance of strict monitoring for an early HBV reactivation diagnosis. Furthermore, HBV reactivation correlates with high risk of HBV chronicity in patients negative for HBsAg at baseline-screening, converting a silent into a chronic infection, requiring long-term antiviral treatment. Finally, a relevant proportion of patients experienced HBV reactivation after completing the recommended course of anti-HBV prophylaxis, suggesting the need to reconsider proper duration of prophylaxis particularly in profound immunosuppression.
Subject(s)
Hepatitis B virus/physiology , Hepatitis B, Chronic/virology , Hepatitis B/virology , Immunosuppressive Agents/adverse effects , Virus Activation/drug effects , Virus Activation/immunology , Disease Progression , Female , Genetic Variation , Genotype , Hepatitis B/diagnosis , Hepatitis B/drug therapy , Hepatitis B/immunology , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/drug effects , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Humans , Immunocompromised Host , Immunosuppressive Agents/therapeutic use , Male , Treatment Outcome , Viral LoadABSTRACT
Intrahepatic total HBV DNA (it-HBV DNA) level might reflect the size of virus reservoir and correlate with the histological status of the liver. To quantitate it-HBV DNA in a series of 70 liver biopsies obtained from hepatitis B chronic patients, a modified version of the COBAS®Ampliprep/COBAS®TaqMan HBV test v2.0 was used for this purpose. The linearity and reproducibility of the modified protocol was tested by quantifying serial dilutions of a full-length HBV containing plasmid and it-HBV DNA from a reference patient. A good linear trend between the expected values and those generated by the assay was observed at different concentrations of both plasmid and reference patient (R 2 = 0.994 and 0.962, respectively). Differences between the values obtained in two independent runs were ≤0.3 log IU for the plasmid and ≤0.6 log IU/mg for the reference patient, showing a high inter-run reproducibility. In the 70 liver biopsies, it-HBV DNA level ranged from 1.4 to 5.4 log IU/mg, with a good linearity and reproducibility between the values obtained in two runs [R 2 = 0.981; median (IQR) difference of it-HBV DNA 0.05 (0.02-0.09) IU/mg]. The modified COBAS®Ampliprep/COBAS®TaqMan HBV test v2.0 allows an accurate quantitation of it-HBV DNA. Its determination may have prognostic value and may be a useful tool for the new therapeutic strategies aimed at eradicating the HBV infection.
Subject(s)
DNA, Viral/analysis , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/virology , Liver/virology , Viral Load/methods , Adult , Biopsy , Female , Hepatitis B virus/genetics , Humans , Male , Reproducibility of ResultsABSTRACT
BACKGROUND: This study characterizes and defines the clinical value of hepatitis B virus (HBV) quasispecies with reverse transcriptase and HBV surface antigen (HBsAg) heterogeneity in patients with acute HBV infection. METHODS: Sixty-two patients with acute HBV infection (44 with genotype D infection and 18 with genotype A infection) were enrolled from 2000 to 2010. Plasma samples obtained at the time of the first examination were analyzed by ultradeep pyrosequencing. The extent of HBsAg amino acid variability was measured by Shannon entropy. RESULTS: Median alanine aminotransferase and serum HBV DNA levels were 2544 U/L (interquartile range, 1938-3078 U/L) and 5.88 log10 IU/mL (interquartile range, 4.47-7.37 log10 IU/mL), respectively. Although most patients serologically resolved acute HBV infection, only 54.1% developed antibody to HBsAg (anti-HBs). A viral population with ≥1 immune-escape mutation was found in 53.2% of patients (intrapatient prevalence range, 0.16%-100%). Notably, by Shannon entropy, higher genetic variability at HBsAg amino acid positions 130, 133, and 157 significantly correlated with no production of anti-HBs in individuals infected with genotype D (P < .05). Stop codons were detected in 19.3% of patients (intrapatient prevalence range, 1.6%-47.5%) and occurred at 11 HBsAg amino acid positions, including 172 and 182, which are known to increase the oncogenic potential of HBV.Finally, ≥1 drug resistance mutation was detected in 8.1% of patients (intrapatient prevalence range, 0.11%-47.5% for primary mutations and 10.5%-99.9% for compensatory mutations). CONCLUSIONS: Acute HBV infection is characterized by complex array of viral quasispecies with reduced antigenicity/immunogenicity and enhanced oncogenic potential. These viral variants may induce difficult-to-treat HBV forms; favor HBV reactivation upon iatrogenic immunosuppression, even years after infection; and potentially affect the efficacy of the current HBV vaccination strategy.
Subject(s)
Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B/virology , RNA-Directed DNA Polymerase/genetics , Acute Disease , Adult , Amino Acid Substitution , Cohort Studies , Drug Resistance, Viral/genetics , Female , Genetic Variation , Genotype , Hepatitis B/epidemiology , Hepatitis B/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/classification , Hepatitis B virus/immunology , High-Throughput Nucleotide Sequencing , Humans , Italy/epidemiology , Male , Middle Aged , Mutation , Prevalence , Sequence Analysis, DNAABSTRACT
Background & Aims: Finite duration of treatment associated with HBsAg loss is the current goal for improved therapeutic approaches against chronic HBV infection, as it indicates elimination or durable inactivation of intrahepatic covalently closed circular DNA (cccDNA). To assist drug development, the definition of early predictive markers of HBsAg loss by assessing their value in reflecting intrahepatic cccDNA levels and transcriptional activity is essential. Fine needle aspirates (FNAs) have recently emerged as a less invasive alternative to core liver biopsy (CLB) and showed to be useful for investigating intrahepatic immune responses. The aim of this study was to optimise and validate the use of FNA vs. CLB to evaluate the intrahepatic viral reservoir. Methods: Paired FNA/CLB samples were obtained from patients with HBeAg+ chronic hepatitis (n = 4), HBeAg- chronic hepatitis (n = 4), and HBeAg- chronic infection (n = 1). One HBeAg+ patient was undergoing tenofovir treatment. HBV 3.5-kb RNA and cccDNA were quantified by droplet digital PCR. Results: cccDNA was quantifiable in all but one FNA/CLB pair, showing the highest levels in untreated HBeAg+ patients, except for the tenofovir-treated patient. Similarly, 3.5-kb RNA was detectable in all but one FNA sample and showed higher levels in HBeAg+ patients. When comparing cccDNA and 3.5-kb RNA quantification in FNA vs. CLB samples, no statistically significant differences were identified. Conclusions: These results demonstrate the possibility to quantify cccDNA and assess its transcriptional activity in patients with chronic hepatitis B by combining FNA and droplet digital PCR. This supports the use of FNA in clinical trials to evaluate the intrahepatic viral reservoir during the development of new antivirals and immunomodulatory agents. Impact and implications: Chronic hepatitis B infection is characterised by a complex interplay between immune responses and viral replication in the liver, which determines the long-term outcome of the disease. In this study, we show that fine needle aspiration of the liver, a less-invasive alternative to core biopsies, allows the assessment of the hepatic viral reservoir.
ABSTRACT
OBJECTIVES: Recombination related to coinfection is a huge driving force in determining the virus genetic variability, particularly in conditions of partial immune control, leading to prolonged infection. Here, we characterized a distinctive mutational pattern, highly suggestive of Delta-Omicron double infection, in a lymphoma patient. METHODS: The specimen was characterized through a combined approach, analyzing the results of deep sequencing in primary sample, viral culture, and plaque assay. RESULTS: Bioinformatic analysis on the sequences deriving from the primary sample supports the hypothesis of a double viral population within the host. Plaque assay on viral culture led to the isolation of a recombinant strain deriving from Delta and Omicron lineages, named XS, which virtually replaced its parent lineages within a single viral propagation. CONCLUSION: It is impossible to establish whether the recombination event happened within the host or in vitro; however, it is important to monitor co-infections, especially in the exceptional intrahost environment of patients who are immunocompromised, as strong driving forces of viral evolution.
Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2/genetics , Immunocompromised Host , Computational BiologyABSTRACT
Five SARS-CoV-2-positive samples showed N-gene drop-out with a RT-PCR multiplex test. WGS found all samples to harbor a deletion in the same region of the N gene, which is likely to impair the efficiency of amplification. This highlights the need for a continued surveillance of viral evolution and diagnostic test performance.
Subject(s)
COVID-19 Testing , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , Diagnostic Tests, Routine , Genome, Viral , Humans , Multiplex Polymerase Chain Reaction , Point Mutation , Whole Genome SequencingABSTRACT
The ongoing evolution of SARS-CoV-2 and the emergence of new viral variants bearing specific escape mutations responsible for immune evasion from antibody neutralisation has required a more accurate characterisation of the immune response as one of the evolutive forces behind viral adaptation to a largely immunised human population. In this work, culturing in the presence of neutralising sera vigorously promoted mutagenesis leading to the acquisition of known escape mutations on the spike as well as new presumptive escape mutations on structural proteins whose role as target of the neutralizing antibody response might have been thus far widely neglected. From this perspective, this study, in addition to tracing the past evolution of the species back to interactions with neutralising antibody immune response, also offers a glimpse into future evolutive scenarios.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/genetics , Humans , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
The incidence of total joint arthroplasty is increasing over time since the last decade and expected to be more than 4 million by 2030. As a consequence, the detection of infections associated with surgical interventions is increasing and prosthetic joint infections are representing both a clinically and economically challenging problem. Many pathogens, from bacteria to fungi, elicit the immune system response and produce a polymeric matrix, the biofilm, that serves as their protection. In the last years, the implementation of diagnostic methodologies reduced the error rate and the turn-around time: polymerase chain reaction, targeted or broad-spectrum, and next-generation sequencing have been introduced and they represent a robust approach nowadays that frees laboratories from the unique approach based on culture-based techniques.
ABSTRACT
The role of novel HBV markers in predicting Hepatitis B virus reactivation (HBV-R) in HBsAg-negative/anti-HBc-positive oncohaematological patients was examined. One hundred and seven HBsAg-negative/anti-HBc-positive oncohaematological patients, receiving anti-HBV prophylaxis for >18 months, were included. At baseline, all patients had undetectable HBV DNA, and 67.3% were anti-HBs positive. HBV-R occurred in 17 (15.9%) patients: 6 during and 11 after the prophylaxis period. At HBV-R, the median (IQR) HBV-DNA was 44 (27-40509) IU/mL, and the alanine aminotransferase upper limit of normal (ULN) was 44% (median (IQR): 81 (49-541) U/L). An anti-HBc > 3 cut-off index (COI) plus anti-HBs persistently/declining to <50 mIU/mL was predictive for HBV-R (OR (95% CI): 9.1 (2.7-30.2); 63% of patients with vs. 15% without this combination experienced HBV-R (p < 0.001)). The detection of highly sensitive (HS) HBsAg and/or HBV-DNA confirmed at >2 time points, also predicts HBV-R (OR (95% CI): 13.8 (3.6-52.6); 50% of positive vs. 7% of negative patients to these markers experienced HBV-R (p = 0.001)). HS-HBs and anti-HBc titration proved to be useful early markers of HBV-R. The use of these markers demonstrated that HBV-R frequently occurs in oncohaematological patients with signs of resolved HBV infection, raising issues of proper HBV-R monitoring.
ABSTRACT
Hepatitis B virus (HBV) contains three surface glycoproteins-Large-HBs (L-HBs), Middle-HBs (M-HBs), and Small-HBs (S-HBs), known to contribute to HBV-driven pro-oncogenic properties. Here, we examined the kinetics of HBs-isoforms in virologically-suppressed patients who developed or did not develop hepatocellular carcinoma (HCC). This study enrolled 30 chronically HBV-infected cirrhotic patients under fully-suppressive anti-HBV treatment. Among them, 13 patients developed HCC. Serum samples were collected at enrolment (T0) and at HCC diagnosis or at the last control for non-HCC patients (median (range) follow-up: 38 (12-48) months). Ad-hoc ELISAs were designed to quantify L-HBs, M-HBs and S-HBs (Beacle). At T0, median (IQR) levels of S-HBs, M-HBs and L-HBs were 3140 (457-6995), 220 (31-433) and 0.2 (0-1.7) ng/mL. No significant differences in the fraction of the three HBs-isoforms were noticed between patients who developed or did not develop HCC at T0. On treatment, S-HBs showed a >25% decline or remained stable in a similar proportion of HCC and non-HCC patients (58.3% of HCC- vs. 47.1% of non-HCC patients, p = 0.6; 25% of HCC vs. 29.4% of non-HCC, p = 0.8, respectively). Conversely, M-HBs showed a >25% increase in a higher proportion of HCC compared to non-HCC patients (50% vs. 11.8%, p = 0.02), in line with M-HBs pro-oncogenic role reported in in vitro studies. No difference in L-HBs kinetics was observed in HCC and non-HCC patients. In conclusion, an increase in M-HBs levels characterizes a significant fraction of HCC-patients while under prolonged HBV suppression and stable/reduced total-HBs. The role of M-HBs kinetics in identifying patients at higher HCC risk deserves further investigation.
ABSTRACT
Immune-suppression driven Hepatitis B Virus (HBV)-reactivation poses serious concerns since it occurs in several clinical settings and can result in severe forms of hepatitis. Previous studies showed that HBV strains, circulating in patients with HBV-reactivation, are characterized by an enrichment of immune-escape mutations in HBV surface antigen (HBsAg). Here, we focused on specific immune-escape mutations associated with the acquisition of N-linked glycosylation sites in HBsAg (NLGSs). In particular, we investigated profiles of NLGSs in 47 patients with immunosuppression-driven HBV-reactivation and we evaluated their impact on HBsAg-antigenicity and HBV-replication in vitro. At HBV-reactivation, despite a median serum HBV-DNA of 6.7 [5.3-8.0] logIU/mL, 23.4% of patients remained HBsAg-negative. HBsAg-negativity at HBV-reactivation correlated with the presence of >1 additional NLGSs (p < 0.001). These NLGSs are located in the major hydrophilic region of HBsAg (known to be the target of antibodies) and resulted from the single mutation T115N, T117N, T123N, N114ins, and from the triple mutant S113N+T131N+M133T. In vitro, NLGSs strongly alter HBsAg antigenic properties and recognition by antibodies used in assays for HBsAg-quantification without affecting HBsAg-secretion and other parameters of HBV-replication. In conclusion, additional NLGSs correlate with HBsAg-negativity despite HBV-reactivation, and hamper HBsAg-antigenicity in vitro, supporting the role of NGSs in immune-escape and the importance of HBV-DNA for a proper diagnosis of HBV-reactivation.
Subject(s)
Hepatitis B Antibodies/immunology , Hepatitis B Surface Antigens/chemistry , Hepatitis B Surface Antigens/immunology , Immune Evasion/genetics , Immunosuppression Therapy , Reinfection/virology , Aged , Cell Line , Female , Glycosylation , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Humans , Male , Middle Aged , Mutation , Virus ActivationABSTRACT
Increasing evidences suggest that HBsAg-production varies across HBV-genotypes. HBsAg C-terminus plays a crucial role for HBsAg-secretion. Here, we evaluate HBsAg-levels in different HBV-genotypes in HBeAg-negative chronic infection, the correlation of specific mutations in HBsAg C-terminus with HBsAg-levels in-vivo, their impact on HBsAg-secretion in-vitro and on structural stability in-silico.HBsAg-levels were investigated in 323 drug-naïve HBeAg-negative patients chronically infected with HBV genotype-D(N = 228), -A(N = 65) and -E(N = 30). Genotype-D was characterized by HBsAg-levels lower than genotype-A and -E (3.3[2.7-3.8]IU/ml; 3.8[3.5-4.2]IU/ml and 3.9[3.7-4.2]IU/ml, P < 0.001). Results confirmed by multivariable analysis correcting for patients'demographics, HBV-DNA, ALT and infection-status.In genotype-D, specific C-terminus mutations (V190A-S204N-Y206C-Y206F-S210N) significantly correlate with HBsAg<1000IU/ml(P-value from <0.001 to 0.04). These mutations lie in divergent pathways involving other HBsAg C-terminus mutations: V190A + F220L (Phi = 0.41, P = 0.003), S204N + L205P (Phi = 0.36, P = 0.005), Y206F + S210R (Phi = 0.47, P < 0.001) and S210N + F220L (Phi = 0.40, P = 0.006). Notably, patients with these mutational pairs present HBsAg-levels 1log lower than patients without them(P-value from 0.003 to 0.02). In-vitro, the above-mentioned mutational pairs determined a significant decrease in HBsAg secretion-efficiency compared to wt(P-value from <0.001 to 0.02). Structurally, these mutational pairs reduced HBsAg C-terminus stability and determined a rearrangement of this domain.In conclusion, HBsAg-levels in genotype-D are significantly lower than in genotype-A and -E in HBeAg-negative patients. In genotype-D, specific mutational clusters in HBsAg C-terminus correlate with lower HBsAg-levels in-vivo, hamper HBsAg-release in-vitro and affect its structural stability, supporting their detrimental role on HBsAg-secretion. In this light, genotypic-testing can be a valuable tool to optimize the clinical interpretation of HBsAg in genotype-D and to provide information on HBV-pathogenicity and disease-progression.
Subject(s)
Hepatitis B Surface Antigens/analysis , Hepatitis B virus , Hepatitis B, Chronic/diagnosis , Adult , Female , Genotype , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B virus/pathogenicity , Humans , Male , Middle Aged , MutationABSTRACT
Introduction: The availability of a preventative vaccine, interferon, and nucleos(t)ide analogs have provided progress in the control of chronic hepatitis B (CHB). Despite this, it remains a major contributor to global morbidity and mortality. Developments in our understanding of the pathogenesis of CHB and the emergence of new therapies are paving the way, as we move toward HBV cure.Areas covered: We performed bibliographical searches of online databases to review the literature regarding conventional disease phases of CHB. We provide the latest evidence challenging the perception of the natural history of CHB, noting that previously considered quiescent disease phases may not represent benign disease states devoid of progression. We explore the use of potential novel immunological and viral tools which should enhance disease stratification and management decisions in the coming years. Finally, we discuss the timing of treatment and how this could be initiated earlier to improve treatment outcomes, preventing sequelae of chronic infection.Expert opinion: The treatment paradigm in CHB is set to change with multiple novel agents in early phase clinical trials with the aim of a functional cure. An improved understanding of disease pathogenesis and the timing of treatment will be critical to the success of new therapies.
Subject(s)
Antiviral Agents/administration & dosage , Hepatitis B Vaccines/administration & dosage , Hepatitis B, Chronic/drug therapy , Animals , Hepatitis B, Chronic/epidemiology , Hepatitis B, Chronic/prevention & control , Humans , Interferons/administration & dosage , Nucleosides/administration & dosage , Nucleotides/administration & dosage , Time FactorsABSTRACT
Hepatitis B virus (HBV) genotype E almost exclusively occurs in African people, and its presence is more commonly associated with the development of chronic HBV (CHB) infection. Moreover, an epidemiological link has been found between the distribution of HBV genotype E infection and African countries with high incidences of hepatocellular carcinoma. As part of a programme for the health assessment of migrants, we evaluated 358 young African subjects for HBV infection; 58.1% (208/358) were positive for an HBV marker, and 54 (25.5%) had CHB. Eighty-one percent of the CHB subjects were infected with HBV genotype E, with a median serum HBV-DNA of 3.2 (IQR: 2.7-3.6) logIU/ml. All patients had high serum HBsAg titres (10,899 [range 5,359-20,272] IU/ml), and no correlation was found between HBsAg titres and HBV-DNA plasma levels. RT sequence analysis showed the presence of a number of immune escape mutations: strains from all of the patients had a serine at HBsAg position 140; 3 also had T116N, Y100C, and P142L+S143L substitutions; and 1 had a G112R substitution. Six (18%) patients had stop-codons at position 216. In 5 of the 9 (26.5%) CHB patients, ultrasound liver biopsy, quantification of total intrahepatic HBV-DNA and cccDNA, and RT/HBsAg sequencing were performed. The median (IQR) total intrahepatic HBV-DNA was 766 (753-1139) copies/1000 cells, and the median (IQR) cccDNA was 17 (10-27) copies/1000 cells. Correlations were observed for both total intrahepatic HBV-DNA and cccDNA with serum HBV-DNA, while no correlation was found for the HBsAg titres. A difference of 2.5/1,000 nucleotides was found in the HBsAg sequences obtained from plasma and from liver tissue, with 3 cases of possible viral anatomical compartmentalization. In conclusion, a high rate of CHB infection due to the E genotype was demonstrated in a group of immigrants from Western Africa. An analysis of the viral strains obtained showed the virological characteristics of immune escape, which may be the cause of viral replication persistence. Moreover, a fair percentage of stop codon mutations were found. The lack of correlation between HBsAg titres and plasma or intrahepatic HBV-DNA found in these subjects suggests a pathway of virus production that is not linked to HBsAg secretion. Studies with a larger number of patients with CHB due to the E genotype are advisable to corroborate these observations.
Subject(s)
Emigration and Immigration , Genotype , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis B, Chronic/epidemiology , Hepatitis B, Chronic/immunology , Adult , Africa , Female , Hepatitis B, Chronic/ethnology , Humans , Italy/epidemiology , Italy/ethnology , Male , Middle Aged , Young AdultABSTRACT
Chronic HBV + HDV infection is associated with greater risk of liver fibrosis, earlier hepatic decompensation, and liver cirrhosis hepatocellular carcinoma compared to HBV mono-infection. However, to-date no direct anti-HDV drugs are available in clinical practice. Here, we identified conserved and variable regions in HBsAg and HDAg domains in HBV + HDV infection, a critical finding for the design of innovative therapeutic agents. The extent of amino-acid variability was measured by Shannon-Entropy (Sn) in HBsAg genotype-d sequences from 31 HBV + HDV infected and 62 HBV mono-infected patients (comparable for demographics and virological-parameters), and in 47 HDAg genotype-1 sequences. Positions with Sn = 0 were defined as conserved. The percentage of conserved HBsAg-positions was significantly higher in HBV + HDV infection than HBV mono-infection (p = 0.001). Results were confirmed after stratification for HBeAg-status and patients' age. A Sn = 0 at specific positions in the C-terminus HBsAg were correlated with higher HDV-RNA, suggesting that conservation of these positions can preserve HDV-fitness. Conversely, HDAg was characterized by a lower percentage of conserved-residues than HBsAg (p < 0.001), indicating higher functional plasticity. Furthermore, specific HDAg-mutations were significantly correlated with higher HDV-RNA, suggesting a role in conferring HDV replicative-advantage. Among HDAg-domains, only the virus-assembly signal exhibited a high genetic conservation (75% of conserved-residues). In conclusion, HDV can constrain HBsAg genetic evolution to preserve its fitness. The identification of conserved regions in HDAg poses the basis for designing innovative targets against HDV-infection.