Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Cell ; 148(4): 780-91, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341448

ABSTRACT

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Subject(s)
Facial Neoplasms/veterinary , Genomic Instability , Marsupialia/genetics , Mutation , Animals , Clonal Evolution , Endangered Species , Facial Neoplasms/epidemiology , Facial Neoplasms/genetics , Facial Neoplasms/pathology , Female , Genome-Wide Association Study , Male , Molecular Sequence Data , Tasmania/epidemiology
2.
Bioinformatics ; 37(23): 4559-4561, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34623383

ABSTRACT

SUMMARY: A main task in computational cancer analysis is the identification of patient subgroups (i.e. cohorts) based on metadata attributes (patient stratification) or genomic markers of response (biomarkers). Coral is a web-based cohort analysis tool that is designed to support this task: Users can interactively create and refine cohorts, which can then be compared, characterized and inspected down to the level of single items. Coral visualizes the evolution of cohorts and also provides intuitive access to prevalence information. Furthermore, findings can be stored, shared and reproduced via the integrated session management. Coral is pre-loaded with data from over 128 000 samples from the AACR Project GENIE, the Cancer Genome Atlas and the Cell Line Encyclopedia. AVAILABILITY AND IMPLEMENTATION: Coral is publicly available at https://coral.caleydoapp.org. The source code is released at https://github.com/Caleydo/coral. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Anthozoa , Neoplasms , Animals , Genome , Software , Internet
3.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20016485

ABSTRACT

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Mutation/genetics , Neoplasms/genetics , Adult , Cell Line, Tumor , DNA Damage/genetics , DNA Mutational Analysis , DNA Repair/genetics , Gene Dosage/genetics , Humans , Loss of Heterozygosity/genetics , Male , Melanoma/etiology , Melanoma/genetics , MicroRNAs/genetics , Mutagenesis, Insertional/genetics , Neoplasms/etiology , Polymorphism, Single Nucleotide/genetics , Precision Medicine , Sequence Deletion/genetics , Ultraviolet Rays
4.
Bioinformatics ; 28(11): 1415-9, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22556365

ABSTRACT

MOTIVATION: The Burrows-Wheeler transform (BWT) is the foundation of many algorithms for compression and indexing of text data, but the cost of computing the BWT of very large string collections has prevented these techniques from being widely applied to the large sets of sequences often encountered as the outcome of DNA sequencing experiments. In previous work, we presented a novel algorithm that allows the BWT of human genome scale data to be computed on very moderate hardware, thus enabling us to investigate the BWT as a tool for the compression of such datasets. RESULTS: We first used simulated reads to explore the relationship between the level of compression and the error rate, the length of the reads and the level of sampling of the underlying genome and compare choices of second-stage compression algorithm. We demonstrate that compression may be greatly improved by a particular reordering of the sequences in the collection and give a novel 'implicit sorting' strategy that enables these benefits to be realized without the overhead of sorting the reads. With these techniques, a 45× coverage of real human genome sequence data compresses losslessly to under 0.5 bits per base, allowing the 135.3 Gb of sequence to fit into only 8.2 GB of space (trimming a small proportion of low-quality bases from the reads improves the compression still further). This is >4 times smaller than the size achieved by a standard BWT-based compressor (bzip2) on the untrimmed reads, but an important further advantage of our approach is that it facilitates the building of compressed full text indexes such as the FM-index on large-scale DNA sequence collections. AVAILABILITY: Code to construct the BWT and SAP-array on large genomic datasets is part of the BEETL library, available as a github repository at https://github.com/BEETL/BEETL.


Subject(s)
Algorithms , Data Compression/methods , Databases, Nucleic Acid , Genome, Human , Genomics/methods , Computer Simulation , Escherichia coli/genetics , Humans , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL