Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Physiol Heart Circ Physiol ; 314(2): H160-H169, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28986357

ABSTRACT

Maintaining a balance of ω-6 and ω-3 fatty acids is essential for cardiac health. Current ω-6 and ω-3 fatty acids in the American diet have shifted from the ideal ratio of 2:1 to almost 20:1; while there is a body of evidence that suggests the negative impact of such a shift in younger organisms, the underlying age-related metabolic signaling in response to the excess influx of ω-6 fatty acids is incompletely understood. In the present study, young (6 mo old) and aging (≥18 mo old) mice were fed for 2 mo with a ω-6-enriched diet. Excess intake of ω-6 enrichment decreased the total lean mass and increased nighttime carbohydrate utilization, with higher levels of cardiac cytokines indicating low-grade chronic inflammation. Dobutamine-induced stress tests displayed an increase in PR interval, a sign of an atrioventricular defect in ω-6-fed aging mice. Excess ω-6 fatty acid intake in aging mice showed decreased 12-lipoxygenase with a concomitant increase in 15-lipoxygenase levels, resulting in the generation of 15( S)-hydroxyeicosatetraenoic acid, whereas cyclooxygenase-1 and -2 generated prostaglandin E2, leukotriene B4, and thromboxane B2. Furthermore, excessive ω-6 fatty acids led to dysregulated nuclear erythroid 2-related factor 2/antioxidant-responsive element in aging mice. Moreover, ω-6 fatty acid-mediated changes were profound in aging mice with respect to the eicosanoid profile while minimal changes were observed in the size and shape of cardiomyocytes. These findings provide compelling evidence that surplus consumption of ω-6 fatty acids, coupled with insufficient intake of ω-3 fatty acids, is linked to abnormal changes in ECG. These manifestations contribute to functional deficiencies and expansion of the inflammatory mediator milieu during later stages of aging. NEW & NOTEWORTHY Aging has a profound impact on the metabolism of fatty acids to maintain heart function. The excess influx of ω-6 fatty acids in aging perturbed electrocardiography with marked signs of inflammation and a dysregulated oxidative-redox balance. Thus, the quality and quantity of fatty acids determine the cardiac pathology and energy utilization in aging.


Subject(s)
Aging/metabolism , Animal Nutritional Physiological Phenomena , Arrhythmias, Cardiac/chemically induced , Electrocardiography , Energy Metabolism/drug effects , Fatty Acids, Omega-6/toxicity , Heart Conduction System/drug effects , Inflammation/chemically induced , Action Potentials/drug effects , Age Factors , Animal Feed , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Chronic Disease , Cytokines/genetics , Cytokines/metabolism , Fatty Acids, Omega-6/administration & dosage , Heart Conduction System/physiopathology , Heart Rate/drug effects , Inflammation/metabolism , Inflammation/physiopathology , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Nutritional Status , Risk Assessment , Risk Factors
2.
Bioorg Med Chem Lett ; 23(11): 3443-7, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23597790

ABSTRACT

Selective phosphodiesterase 2 (PDE2) inhibitors are shown to have efficacy in a rat model of osteoarthritis (OA) pain. We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of phosphodiesterase 4 (PDE4) inhibitors, while minimizing PDE4 inhibitory activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like binding mode orthogonal to the cAMP-like binding mode found in PDE4. Extensive structure activity relationship studies ultimately led to identification of pyrazolodiazepinone, 22, which was >1000-fold selective for PDE2 over recombinant, full length PDEs 1B, 3A, 3B, 4A, 4B, 4C, 7A, 7B, 8A, 8B, 9, 10 and 11. Compound 22 also retained excellent PDE2 selectivity (241-fold to 419-fold) over the remaining recombinant, full length PDEs, 1A, 4D, 5, and 6. Compound 22 exhibited good pharmacokinetic properties and excellent oral bioavailability (F=78%, rat). In an in vivo rat model of OA pain, compound 22 had significant analgesic activity 1 and 3h after a single, 10 mg/kg, subcutaneous dose.


Subject(s)
Azepines/chemistry , Azirines/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Dihydropyridines/chemistry , Phosphodiesterase Inhibitors/chemistry , Pyrazoles/chemistry , Analgesics/chemistry , Analgesics/pharmacokinetics , Analgesics/therapeutic use , Animals , Azepines/pharmacokinetics , Azepines/therapeutic use , Azirines/pharmacokinetics , Azirines/therapeutic use , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dihydropyridines/pharmacokinetics , Dihydropyridines/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Half-Life , Osteoarthritis/drug therapy , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphodiesterase Inhibitors/therapeutic use , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 23(11): 3438-42, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23582272

ABSTRACT

We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of PDE4 inhibitors, while simultaneously minimizing PDE4 activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like mode in contrast to the cAMP-like binding mode found in PDE4. Structure activity relationship studies coupled with an inhibitor bound crystal structure in the active site of the catalytic domain of PDE2 identified structural features required to minimize PDE4 inhibition while simultaneously maximizing PDE2 inhibition.


Subject(s)
Azirines/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Dihydropyridines/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase Inhibitors/chemistry , Animals , Azirines/metabolism , Azirines/therapeutic use , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dihydropyridines/metabolism , Dihydropyridines/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Osteoarthritis/drug therapy , Phosphodiesterase Inhibitors/metabolism , Phosphodiesterase Inhibitors/therapeutic use , Protein Binding , Structure-Activity Relationship
4.
Cancer Discov ; 13(11): 2370-2393, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37584601

ABSTRACT

Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE: The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Histones/genetics , Treatment Outcome , Epigenesis, Genetic , Mutation
5.
PLoS One ; 12(4): e0175653, 2017.
Article in English | MEDLINE | ID: mdl-28384283

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0173580.].

6.
PLoS One ; 12(3): e0173580, 2017.
Article in English | MEDLINE | ID: mdl-28301511

ABSTRACT

Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators.


Subject(s)
Genes, Bacterial , Trans-Activators/metabolism , Transcription, Genetic , Xanthomonas/genetics , Promoter Regions, Genetic
7.
Virology ; 486: 248-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26474371

ABSTRACT

The major obstacle to cure infections with human immunodeficiency virus (HIV-1) is integrated proviral genomes, which are not eliminated by antiretroviral therapies (ART). Treatment approaches with latency-reversing agents (LRAs) aim at inducing provirus expression to tag latently-infected cells for clearance through viral cytopathic effects or cytotoxic T cell (CTL) responses. However, the currently tested LRAs reveal evident drawbacks as gene expression is globally induced and viral outgrowth is insecure. Here, we present transcription activator-like effector (TALE) proteins as potent tools to activate HIV-1 specifically. The large variety of circulating HIV-1 strains and, accordingly, integrated proviruses was addressed by the programmable DNA-specificity of TALEs. Using customized engineered TALEs, a substantial transcription activation and viral outgrowth was achieved with cells obtained from different HIV-1 patients. Our data suggest that TALEs may be useful tools in future strategies aimed at removing HIV-1 reservoirs.


Subject(s)
HIV Infections/metabolism , HIV-1/physiology , Transcription Factors/metabolism , Virus Activation , Gene Expression Regulation, Viral , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Humans , Multigene Family , Species Specificity , Transcription Factors/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Latency
SELECTION OF CITATIONS
SEARCH DETAIL