Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Publication year range
1.
Blood ; 139(5): 732-747, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34653238

ABSTRACT

Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-κB, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments.


Subject(s)
Lymphoma, B-Cell, Marginal Zone , Splenic Neoplasms , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Chromosome Aberrations , Immunophenotyping , Lymphoma, B-Cell, Marginal Zone/diagnosis , Lymphoma, B-Cell, Marginal Zone/genetics , Multigene Family , Mutation , Spleen/pathology , Splenic Neoplasms/diagnosis , Splenic Neoplasms/genetics , Transcriptome , Tumor Microenvironment
2.
Haematologica ; 109(2): 493-508, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37560801

ABSTRACT

The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , In Situ Hybridization, Fluorescence , Translocation, Genetic , Gene Rearrangement , Lymphoma, Large B-Cell, Diffuse/genetics , Immunoglobulin Heavy Chains/genetics , Chromosomes, Human, Pair 14/genetics
3.
Blood ; 138(22): 2202-2215, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34189576

ABSTRACT

Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with a heterogeneous clinical and biological behavior. SOX11 oncogenic expression contributes to the aggressiveness of these tumors by different mechanisms, including tumor and stromal cell interactions. However, the precise composition of the immune cell microenvironment of MCL, its possible relationship to SOX11 expression, and how it may contribute to tumor behavior is not well known. Here, we performed an integrative transcriptome analysis of 730 immune-related genes combined with the immune cell phenotype analysis by immunohistochemistry in SOX11+ and SOX11- primary nodal MCL cases and non-neoplastic reactive lymph nodes. SOX11+ MCL had a significant lower T-cell intratumoral infiltration compared with negative cases. A reduced expression of MHCI/II-like and T-cell costimulation and signaling activation related transcripts was significantly associated with poor clinical outcome. Moreover, we identified CD70 as a SOX11 direct target gene, whose overexpression was induced in SOX11+, but not SOX11- tumor cells by CD40L in vitro. CD70 was overexpressed in primary SOX11+ MCL and it was associated with an immune unbalance of the tumor microenvironment characterized by increased number of effector regulatory t (Treg) cell infiltration, higher proliferation, and aggressive clinical course. CD27 was expressed with moderate to strong intensity in 76% of cases. Overall, our results suggest that SOX11 expression in MCL is associated with an immunosuppressive microenvironment characterized by CD70 overexpression in tumor cells, increased Treg cell infiltration and downmodulation of antigen processing, and presentation and T-cell activation that could promote MCL progression and represent a potential target for tailored therapies.


Subject(s)
CD27 Ligand/immunology , Lymphoma, Mantle-Cell/immunology , SOXC Transcription Factors/immunology , T-Lymphocytes, Regulatory/immunology , Antigen Presentation , CD27 Ligand/analysis , Humans , Lymphocyte Activation , Lymphoma, Mantle-Cell/pathology , SOXC Transcription Factors/analysis , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment
4.
Hematol Oncol ; 41(4): 631-643, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36994552

ABSTRACT

While some follicular lymphoma (FL) patients do not require treatment or experience prolonged responses, others relapse early, and little is known about genetic alterations specific to patients with a particular clinical behavior. We selected 56 grade 1-3A FL patients according to their need of treatment or timing of relapse: never treated (n = 7), non-relapsed (19), late relapse (14), early relapse or POD24 (11), and primary refractory (5). We analyzed 56 diagnostic and 12 paired relapse lymphoid tissue biopsies and performed copy number alteration (CNA) analysis and next generation sequencing (NGS). We identified six focal driver losses (1p36.32, 6p21.32, 6q14.1, 6q23.3, 9p21.3, 10q23.33) and 1p36.33 copy-neutral loss of heterozygosity (CN-LOH). By integrating CNA and NGS results, the most frequently altered genes/regions were KMT2D (79%), CREBBP (67%), TNFRSF14 (46%) and BCL2 (40%). Although we found that mutations in PIM1, FOXO1 and TMEM30A were associated with an adverse clinical behavior, definitive conclusions cannot be drawn, due to the small sample size. We identified common precursor cells harboring early oncogenic alterations of the KMT2D, CREBBP, TNFRSF14 and EP300 genes and 16p13.3-p13.2 CN-LOH. Finally, we established the functional consequences of mutations by means of protein modeling (CD79B, PLCG2, PIM1, MCL1 and IRF8). These data expand the knowledge on the genomics behind the heterogeneous FL population and, upon replication in larger cohorts, could contribute to risk stratification and the development of targeted therapies.


Subject(s)
Lymphoma, Follicular , Humans , Lymphoma, Follicular/pathology , Neoplasm Recurrence, Local , Mutation , Genomics , Recurrence
5.
Genes Chromosomes Cancer ; 61(1): 37-43, 2022 01.
Article in English | MEDLINE | ID: mdl-34414624

ABSTRACT

Chromosomal translocations in chronic lymphocytic leukemia (CLL) are very rare, and therefore systematic analysis of large series of cases is needed to allow the identification of recurrent rearrangements, breakpoints involved, and target genes. The aims of the present study were to identify new translocations and their clinical impact and to establish their frequency in a large cohort of 2843 CLL patients. By conventional cytogenetics 250 translocations were identified in 215 (7.5%) patients, 186 (74%) were apparently balanced and 64 (26%) were unbalanced. All chromosomes were involved in translocations, except Y chromosome. The chromosomes more frequently translocated were in decreasing frequency chromosomes 14, 18, 13, 17, 1, 6, 2, 3, 8, and 11. Translocations were found in the karyotypes either as the unique chromosomal abnormality (27%), associated with another alteration (24%), or as a part of a complex karyotype (CK, 48%). A large proportion of rearranged breakpoints involved genes related to CLL such as IGH (14q32), RB1, MIR15A, MIR16-1 (13q14), BCL2 (18q21), IGL (22q11.2), TP53 (17p13), IRF4 (6p25-p23), ATM (11q22), and CDK6 (7q21). Overall, 76 novel CLL translocations were identified, including a recurrent t(8;11)(p21;q21-23). Whole-genome sequencing and/or copy-number microarray data of 24 cases with translocations confirmed all rearrangements, enabled refinement of 3 karyotypes and all breakpoints at gene level. The projected survival and time to first treatment significantly decreased linearly with the number of translocations. In summary, this study allowed to establish the frequency of translocations (7.5%) and to identify new translocations in a cohort of 2843 CLL patients.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Translocation, Genetic/genetics , Chromosome Aberrations , Cytogenetic Analysis , Humans , Karyotype , Oligonucleotide Array Sequence Analysis , Prognosis , Spain , Whole Genome Sequencing
6.
Br J Haematol ; 196(1): 146-155, 2022 01.
Article in English | MEDLINE | ID: mdl-34519021

ABSTRACT

We describe 36 patients with splenic marginal zone lymphoma (SMZL) with transformation (SMZL-T), including 15 from a series of 84 patients with SMZL diagnosed at the Hospital Clinic of Barcelona (HCB) and 21 diagnosed with SMZL-T in other centres. In the HCB cohort, the cumulative incidence of transformation at 5 years was 15%. Predictors for transformation were cytopenias, hypoalbuminaemia, complex karyotype (CK) and both the Intergruppo Italiano Linfomi (ILL) and simplified Haemoglobin, Platelet count, lactate dehydrogenase (LDH) and extrahilar Lymphadenopathy (HPLL)/ABC scores (P < 0·05). The only independent predictor for transformation in multivariate analysis was CK [hazard ratio (HR) 4·025, P = 0·05]. Patients with SMZL-T had a significantly higher risk of death than the remainder (HR 3·89, P < 0·001). Of the 36 patients with SMZL-T, one developed Hodgkin lymphoma and 35 a diffuse large B-cell lymphoma, 71% with a non-germinal centre phenotype. The main features were B symptoms, lymphadenopathy, and high serum LDH. CK was observed in 12/22 (55%) SMZL-T and fluorescence in situ hybridisation detected abnormalities of MYC proto-oncogene, basic helix-loop-helix transcription factor (MYC), B-cell leukaemia/lymphoma 2 (BCL2) and/or BCL6 in six of 14 (43%). In all, 21 patients received immunochemotherapy, six chemotherapy, one radiotherapy and three splenectomy. The complete response (CR) rate was 61% and the median survival from transformation was 4·92 years. Predictors for a worse survival in multivariate analysis were high-risk International Prognostic Index (HR 5·294, P = 0·016) and lack of CR (HR 2·67, P < 0·001).


Subject(s)
Lymphoma, B-Cell, Marginal Zone/diagnosis , Spleen/pathology , Splenic Neoplasms/diagnosis , Adult , Aged , Biomarkers, Tumor , Cell Transformation, Neoplastic , Cytogenetic Analysis , Disease Management , Disease Susceptibility , Female , Humans , Immunohistochemistry , Immunophenotyping , In Situ Hybridization, Fluorescence , Incidence , Lymphoma, B-Cell, Marginal Zone/epidemiology , Lymphoma, B-Cell, Marginal Zone/etiology , Lymphoma, B-Cell, Marginal Zone/metabolism , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Splenic Neoplasms/epidemiology , Splenic Neoplasms/etiology , Splenic Neoplasms/metabolism
7.
Blood ; 136(12): 1419-1432, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32584970

ABSTRACT

Mantle cell lymphoma (MCL) is a mature B-cell neoplasm initially driven by CCND1 rearrangement with 2 molecular subtypes, conventional MCL (cMCL) and leukemic non-nodal MCL (nnMCL), that differ in their clinicobiological behavior. To identify the genetic and epigenetic alterations determining this diversity, we used whole-genome (n = 61) and exome (n = 21) sequencing (74% cMCL, 26% nnMCL) combined with transcriptome and DNA methylation profiles in the context of 5 MCL reference epigenomes. We identified that open and active chromatin at the major translocation cluster locus might facilitate the t(11;14)(q13;32), which modifies the 3-dimensional structure of the involved regions. This translocation is mainly acquired in precursor B cells mediated by recombination-activating genes in both MCL subtypes, whereas in 8% of cases the translocation occurs in mature B cells mediated by activation-induced cytidine deaminase. We identified novel recurrent MCL drivers, including CDKN1B, SAMHD1, BCOR, SYNE1, HNRNPH1, SMARCB1, and DAZAP1. Complex structural alterations emerge as a relevant early oncogenic mechanism in MCL, targeting key driver genes. Breakage-fusion-bridge cycles and translocations activated oncogenes (BMI1, MIR17HG, TERT, MYC, and MYCN), generating gene amplifications and remodeling regulatory regions. cMCL carried significant higher numbers of structural variants, copy number alterations, and driver changes than nnMCL, with exclusive alterations of ATM in cMCL, whereas TP53 and TERT alterations were slightly enriched in nnMCL. Several drivers had prognostic impact, but only TP53 and MYC aberrations added value independently of genomic complexity. An increasing genomic complexity, together with the presence of breakage-fusion-bridge cycles and high DNA methylation changes related to the proliferative cell history, defines patients with different clinical evolution.


Subject(s)
Epigenesis, Genetic , Gene Rearrangement , Lymphoma, Mantle-Cell/genetics , Mutation , Adult , Aged , Aged, 80 and over , Cell Proliferation , Cyclin D1/genetics , DNA Methylation , Female , Gene Expression Regulation, Neoplastic , Genomics , Humans , Immunoglobulins/genetics , Lymphoma, Mantle-Cell/pathology , Male , Middle Aged
8.
Haematologica ; 107(3): 593-603, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33691382

ABSTRACT

Genome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ≥5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (κ=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57). High complexity maintained its significance in the multivariate analysis for TTFT including TP53 and IGHV status when defined by CBA (hazard ratio [HR] 3.23; P<0.001) and GM (HR 2.74; P<0.001). Our findings suggest that both methods are useful but not equivalent for risk stratification of CLL patients. Validation studies are needed to establish the prognostic value of genome complexity based on GM data in future prospective studies.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Chromosome Aberrations , Chromosome Banding , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Prognosis , Risk Assessment
9.
Hematol Oncol ; 40(4): 588-595, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35611996

ABSTRACT

Serum soluble CD23 (sCD23) levels have been acknowledged as a prognostic factor in patients with chronic lymphocytic leukemia (CLL), but their potential relevance has not been analyzed in recent times. We retrospectively studied 338 CLL, small lymphocytic lymphoma, or CLL-type monoclonal B-cell lymphocytosis patients from a single institution, with available sCD23 levels at diagnosis. Baseline features and outcomes were compared between patients with sCD23 ≤/>1000 UI/L. The 140 patients (41%) who had sCD23 > 1000 UI/L showed adverse-risk clinical and biological characteristics. High sCD23 levels were predictive of a shorter time to first treatment (5-year probability of requiring treatment: 60 vs. 20%, p < 0.0001; hazard ratio (HR) = 1.72, p = 0.003 in a multivariable model also including the CLL International Prognostic Index and the absolute lymphocyte count), and a poorer 5-year overall survival (70 vs. 82%, p = 0.0009). These data suggest the potential of sCD23 to predict treatment-free survival and to shed light on mechanisms of activity and resistance to CD23-directed therapies.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Biomarkers, Tumor , Humans , Lymphocyte Count , Proportional Hazards Models , Receptors, IgE , Retrospective Studies
10.
Blood ; 133(9): 940-951, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30538135

ABSTRACT

Mantle cell lymphoma (MCL) is characterized by the t(11;14)(q13;q32) translocation resulting in overexpression of cyclin D1. However, a small subset of cyclin D1- MCL has been recognized, and approximately one-half of them harbor CCND2 translocations while the primary event in cyclin D1-/D2- MCL remains elusive. To identify other potential mechanisms driving MCL pathogenesis, we investigated 56 cyclin D1-/SOX11+ MCL by fluorescence in situ hybridization (FISH), whole-genome/exome sequencing, and gene-expression and copy-number arrays. FISH with break-apart probes identified CCND2 rearrangements in 39 cases (70%) but not CCND3 rearrangements. We analyzed 3 of these negative cases by whole-genome/exome sequencing and identified IGK (n = 2) and IGL (n = 1) enhancer hijackings near CCND3 that were associated with cyclin D3 overexpression. By specific FISH probes, including the IGK enhancer region, we detected 10 additional cryptic IGK juxtapositions to CCND3 (6 cases) and CCND2 (4 cases) in MCL that overexpressed, respectively, these cyclins. A minor subset of 4 cyclin D1- MCL cases lacked cyclin D rearrangements and showed upregulation of CCNE1 and CCNE2. These cases had blastoid morphology, high genomic complexity, and CDKN2A and RB1 deletions. Both genomic and gene-expression profiles of cyclin D1- MCL cases were indistinguishable from cyclin D1+ MCL. In conclusion, virtually all cyclin D1- MCLs carry CCND2/CCND3 rearrangements with immunoglobulin genes, including a novel IGK/L enhancer hijacking mechanism. A subset of cyclin D1-/D2-/D3- MCL with aggressive features has cyclin E dysregulation. Specific FISH probes may allow the molecular identification and diagnosis of cyclin D1- MCL.


Subject(s)
Cyclin D2/genetics , Cyclin D3/genetics , Enhancer Elements, Genetic , Gene Rearrangement , Immunoglobulin Light Chains/genetics , Lymphoma, Mantle-Cell/genetics , Aged , Cyclin D1/genetics , Cyclin D1/metabolism , Female , Humans , Lymphoma, Mantle-Cell/pathology , Male , Middle Aged , Prognosis , SOXC Transcription Factors/genetics , Translocation, Genetic
11.
Nature ; 526(7574): 519-24, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26200345

ABSTRACT

Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation/genetics , 3' Untranslated Regions/genetics , Alternative Splicing/genetics , B-Lymphocytes/metabolism , Carrier Proteins/genetics , Chromosomes, Human, Pair 9/genetics , DNA Mutational Analysis , DNA, Neoplasm/genetics , DNA-Binding Proteins , Enhancer Elements, Genetic/genetics , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , PAX5 Transcription Factor/biosynthesis , PAX5 Transcription Factor/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Transcription Factors/genetics
12.
Blood ; 132(4): 413-422, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29769262

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive B-cell malignancy, but some patients have a very indolent evolution. This heterogeneous course is related, in part, to the different biological characteristics of conventional MCL (cMCL) and the distinct subgroup of leukemic nonnodal MCL (nnMCL). Robust criteria to distinguish these MCL subtypes and additional biological parameters that influence their evolution are not well defined. We describe a novel molecular assay that reliably distinguishes cMCL and nnMCL using blood samples. We trained a 16-gene assay (L-MCL16 assay) on the NanoString platform using 19 purified leukemic samples. The locked assay was applied to an independent cohort of 70 MCL patients with leukemic presentation. The assay assigned 37% of cases to nnMCL and 56% to cMCL. nnMCL and cMCL differed in nodal presentation, lactate dehydrogenase, immunoglobulin heavy chain gene mutational status, management options, genomic complexity, and CDKN2A/ATM deletions, but the proportion with 17p/TP53 aberrations was similar in both subgroups. Sequential samples showed that assay prediction was stable over time. nnMCL had a better overall survival (OS) than cMCL (3-year OS 92% vs 69%; P = .006) from the time of diagnosis and longer time to first treatment. Genomic complexity and TP53/CDKN2A aberrations predicted for shorter OS in the entire series and cMCL, whereas only genomic complexity was associated with shorter time to first treatment and OS in nnMCL. In conclusion, the newly developed assay robustly recognizes the 2 molecular subtypes of MCL in leukemic samples. Its combination with genetic alterations improves the prognostic evaluation and may provide useful biological information for management decisions.


Subject(s)
Biomarkers, Tumor/genetics , Leukemia/genetics , Leukemia/pathology , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Mutation , Cohort Studies , Female , Gene Expression Profiling , Genomics , Humans , Leukemia/classification , Lymphoma, Mantle-Cell/classification , Male , Prognosis , Survival Rate
13.
Histopathology ; 75(5): 704-714, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31173643

ABSTRACT

AIMS: Mantle cell lymphoma (MCL) is a heterogeneous disease with an aggressive behaviour in most cases, which is associated with expression of sex determining region-Y-box11 (SOX11). Experimental studies have shown that SOX11 expression is associated with an angiogenic switch characterised by increased expression of angiogenic-related signatures and vascularisation of murine tumours. However, the relationship between angiogenesis and SOX11 expression in primary tumours is not well understood. Therefore, the aim of this study was to evaluate the development of microvascular angiogenesis in primary MCL in relation to SOX11 expression and its potential prognostic value. METHODS AND RESULTS: Fifty-six patients diagnosed with MCL, 38 SOX11-positive and 18 SOX11-negative, were studied. The relative intratumoral microvascular area (MVA) and microvessel density (MVD) (number of intratumoral microvessels/µm2 ) were measured on CD34-stained slides using a computerised image analysis system. SOX11-positive MCL showed a significant higher microvascular development than negative tumours (median MVA = 14.5 × 10-3 versus 5.0 × 10-3 P < 0.001; median MVD = 18.6/µm2 versus 14.2/µm2 , P = 0.021). Analysing the MVA and MVD as continuous variables, a high MVD was associated with shorter overall survival (P = 0.004), and a similar tendency was observed for high MVA (P = 0.064). The microvascular development was not related to the Ki-67 proliferative index or 17p/TP53, 9p or 11q alterations. CONCLUSIONS: These findings suggest that SOX11 promotes an angiogenic phenotype in primary MCL, which may contribute to the more aggressive behaviour of these tumours.


Subject(s)
Lymphoma, Mantle-Cell/pathology , Neovascularization, Pathologic , SOXC Transcription Factors/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prognosis
14.
Mod Pathol ; 31(2): 313-326, 2018 02.
Article in English | MEDLINE | ID: mdl-28984304

ABSTRACT

Most high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements are aggressive B-cell lymphomas. Occasional double-hit follicular lymphomas have been described but the clinicopathological features of these tumors are not well known. To clarify the characteristics of double-hit follicular lymphomas, we analyzed 10 cases of double-hit follicular lymphomas and 15 cases of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements for clinicopathological and genome-wide copy-number alterations and copy-neutral loss-of-heterozygosity profiles. For double-hit follicular lymphomas, the median age was 67.5 years (range: 48-82 years). The female/male ratio was 2.3. Eight patients presented with advanced clinical stage. The median follow-up time was 20 months (range: 1-132 months). At the end of the follow-up, 8 patients were alive, 2 patients were dead including 1 patient with diffuse large B-cell lymphoma transformation. Rearrangements of MYC/BCL2, MYC/BCL6, and MYC/BCL2/BCL6 were seen in 8, 1, and 1 cases, respectively. The partner of MYC was IGH in 6 cases. There were no cases of histological grade 1, 4 cases of grade 2, 5 cases of grade 3a, and 1 case of grade 3b. Two cases of grade 3a exhibited immunoblast-like morphology. Immunohistochemistry demonstrated 9 cases with ≥50% MYC-positive cells. There was significant difference in MYC intensity (P=0.00004) and MIB-1 positivity (P=0.001) between double-hit follicular lymphomas and high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. The genome profile of double-hit follicular lymphomas was comparable with conventional follicular lymphomas (GSE67385, n=198) with characteristic gains of 2p25.3-p11.1, 7p22.3-q36.3, 12q11-q24.33, and loss of 18q21.32-q23 (P<0.05). In comparison with high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements, double-hit follicular lymphomas had fewer copy-number alterations and minimal common region of gain at 2p16.1 (70%), locus also significant against conventional follicular lymphomas (P=0.0001). In summary, double-hit follicular lymphomas tended to be high-grade histology, high MYC protein expression, high MYC/IGH fusion, and minimal common region of gain at 2p16.1. Double-hit follicular lymphomas seemed to be a different disease from high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements and have an indolent clinical behavior similar to follicular lymphomas without MYC rearrangement.


Subject(s)
Gene Rearrangement , Lymphoma, B-Cell/pathology , Lymphoma, Follicular/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-myc/genetics , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Lymphoma, B-Cell/genetics , Lymphoma, Follicular/genetics , Male , Middle Aged , Neoplasm Grading , Phenotype
15.
Blood ; 128(1): 82-92, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27127301

ABSTRACT

To interrogate signaling pathways activated in mantle cell lymphoma (MCL) in vivo, we contrasted gene expression profiles of 55 tumor samples isolated from blood and lymph nodes from 43 previously untreated patients with active disease. In addition to lymph nodes, MCL often involves blood, bone marrow, and spleen and is incurable for most patients. Recently, the Bruton tyrosine kinase (BTK) inhibitor ibrutinib demonstrated important clinical activity in MCL. However, the role of specific signaling pathways in the lymphomagenesis of MCL and the biologic basis for ibrutinib sensitivity of these tumors are unknown. Here, we demonstrate activation of B-cell receptor (BCR) and canonical NF-κB signaling specifically in MCL cells in the lymph node. Quantification of BCR signaling strength, reflected in the expression of BCR regulated genes, identified a subset of patients with inferior survival after cytotoxic therapy. Tumor proliferation was highest in the lymph node and correlated with the degree of BCR activation. A subset of leukemic tumors showed active BCR and NF-κB signaling apparently independent of microenvironmental support. In one of these samples, we identified a novel somatic mutation in RELA (E39Q). This sample was resistant to ibrutinib-mediated inhibition of NF-κB and apoptosis. In addition, we identified germ line variants in genes encoding regulators of the BCR and NF-κB pathway previously implicated in lymphomagenesis. In conclusion, BCR signaling, activated in the lymph node microenvironment in vivo, appears to promote tumor proliferation and survival and may explain the sensitivity of this lymphoma to BTK inhibitors.


Subject(s)
Apoptosis , Drug Resistance, Neoplasm/genetics , Lymphoma, Mantle-Cell , Mutation, Missense , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Transcription Factor RelA , Adenine/analogs & derivatives , Amino Acid Substitution , Apoptosis/drug effects , Apoptosis/genetics , Disease-Free Survival , Female , Humans , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/mortality , Male , Piperidines , Receptors, Antigen, B-Cell/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Survival Rate , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
16.
Blood ; 127(17): 2122-30, 2016 04 28.
Article in English | MEDLINE | ID: mdl-26837699

ABSTRACT

Genomic studies have revealed the complex clonal heterogeneity of chronic lymphocytic leukemia (CLL). The acquisition and selection of genomic aberrations may be critical to understanding the progression of this disease. In this study, we have extensively characterized the mutational status of TP53, SF3B1, BIRC3, NOTCH1, and ATM in 406 untreated CLL cases by ultra-deep next-generation sequencing, which detected subclonal mutations down to 0.3% allele frequency. Clonal dynamics were examined in longitudinal samples of 48 CLL patients. We identified a high proportion of subclonal mutations, isolated or associated with clonal aberrations. TP53 mutations were present in 10.6% of patients (6.4% clonal, 4.2% subclonal), ATM mutations in 11.1% (7.8% clonal, 1.3% subclonal, 2% germ line mutations considered pathogenic), SF3B1 mutations in 12.6% (7.4% clonal, 5.2% subclonal), NOTCH1 mutations in 21.8% (14.2% clonal, 7.6% subclonal), and BIRC3 mutations in 4.2% (2% clonal, 2.2% subclonal). ATM mutations, clonal SF3B1, and both clonal and subclonal NOTCH1 mutations predicted for shorter time to first treatment irrespective of the immunoglobulin heavy-chain variable-region gene (IGHV) mutational status. Clonal and subclonal TP53 and clonal NOTCH1 mutations predicted for shorter overall survival together with the IGHV mutational status. Clonal evolution in longitudinal samples mainly occurred in cases with mutations in the initial samples and was observed not only after chemotherapy but also in untreated patients. These findings suggest that the characterization of the subclonal architecture and its dynamics in the evolution of the disease may be relevant for the management of CLL patients.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Genes, p53 , Inhibitor of Apoptosis Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Neoplasm Proteins/genetics , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Receptor, Notch1/genetics , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Aged, 80 and over , Ataxia Telangiectasia Mutated Proteins/physiology , Baculoviral IAP Repeat-Containing 3 Protein , Clone Cells , DNA Mutational Analysis , Disease Progression , Evolution, Molecular , Female , Humans , Inhibitor of Apoptosis Proteins/physiology , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Middle Aged , Mutation , Neoplasm Proteins/physiology , Neoplastic Stem Cells , Phosphoproteins/physiology , Prognosis , RNA Splicing Factors/physiology , Receptor, Notch1/physiology , Time-to-Treatment , Treatment Outcome , Tumor Suppressor Protein p53/physiology , Ubiquitin-Protein Ligases/physiology , Young Adult
17.
Histopathology ; 70(4): 595-621, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27775850

ABSTRACT

AIMS: We aimed to define the clinicopathological characteristics of 29 primary sinonasal diffuse large B cell lymphoma (DLBCLsn ) in a series of 240 cases of DLBCL not otherwise specified [DLBCLall (NOS) ], including DLBCLsn training set (n = 11) and validation set (n = 18), and DLBCLnon-sn (n = 211). METHODS AND RESULTS: In the training set, 82% had a non-germinal center B-cell-like (Hans' Classifier) (non-GCB) phenotype and 18% were Epstein-Barr virus-encoded small RNAs (EBER)+ . The genomic profile showed gains(+) of 1q21.3q31.2 (55%), 10q24.1 (46%), 11q14.1 (46%) and 18q12.1q23 (46%); losses(-) of 6q26q27 (55%) and 9p21.3 (64%); and copy number neutral loss of heterozygosity (LOH) (acquired uniparental disomy, UPD) at 6p25.3p21.31 (36%). This profile is comparable to DLBCLNOS (GSE11318, n = 203.) and closer to non-GCB/activated B-cell-like subtype (ABC). Nevertheless, +1q31, -9p21.3 and -10q11.1q26.2 were more characteristic of DLBCLsn (P < 0.001). Array results were verified successfully by fluorescence in situ hybridization (FISH) on +1q21.3 (CKS1B), -6q26 (PARK2), +8q24.21 (MYC), -9p21.3 (MTAP, CDKN2A/B), -17p13.1 (TP53) and +18q21.33 (BCL2) with 82-91% agreement. Minimal common regions included biologically relevant genes of MNDA (+1q23.1), RGS1 and RGS13 (+1q31.2), FOXP1 (+3p13), PRDM1 (BLIMP1) and PARK2 (-6q21q26), MYC (+8q24.21), CDKN2A (-9p21.3), PTEN (-10q23.31), MDM2 (+12q15), TP53 (-17p13.1) and BCL2 (+18q21.33). Correlation between DNA copy number and protein immunohistochemistry was confirmed for RGS1, RGS13, FOXP1, PARK2 and BCL2. The microenvironment had high infiltration of M2-like tumour associated macrophages (TAMs) and CD8+ T lymphocytes that associated with higher genomic instability. The DLBCLsn validation set confirmed the clinicopathological characteristics, all FISH loci and immunohistochemistry (IHC) for RGS1. RGS1, one of the most frequently altered genes, was analysed by IHC in DLBCLall and high RGS1 expression associated with non-GCB, EBER+ and unfavourable overall survival (hazard ratio = 1.794; P = 0.016). CONCLUSIONS: DLBCLsn has a characteristic genomic profile. High RGS1 IHC expression associates with poor overall survival in DLBCLall (NOS) .


Subject(s)
Chromosomes, Human, Pair 1/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , RGS Proteins/genetics , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Female , Gene Dosage , Gene Expression Profiling , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , In Situ Hybridization, Fluorescence , Kaplan-Meier Estimate , Loss of Heterozygosity , Lymphoma, Large B-Cell, Diffuse/mortality , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis , Transcriptome
18.
Curr Oncol Rep ; 19(6): 43, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28466437

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm, incurable with current therapies. The t(11;14)(q13;q32) involving cyclin D1 is considered the first oncogenic hit found in virtually all MCLs. However, additional secondary genomic alterations are essential for complete transformation. MCLs are genetically very unstable with several genetic alterations associated with its high proliferative behavior involving several oncogenic pathways. Furthermore, SOX11 is overexpressed in the majority of conventional MCLs (cMCL), including cyclin D1-negative cases, but absent in non-nodal leukemic MCL with indolent clinical behavior (nnMCL). Recent data have revealed the potential oncogenic role of SOX11 in MCL biology, highlighting its implication in tumor aggressiveness and progression. This review addresses the implication of SOX11 overexpression and frequent genetic lesions, cooperating with cyclin D1 underlying the pathogenesis of this aggressive disease.


Subject(s)
Cyclin D1/metabolism , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , SOXC Transcription Factors/metabolism , Biomarkers, Tumor/metabolism , Carcinogenesis , Humans , Immunohistochemistry , Lymphoma, Mantle-Cell/pathology
19.
Nature ; 475(7354): 101-5, 2011 Jun 05.
Article in English | MEDLINE | ID: mdl-21642962

ABSTRACT

Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.


Subject(s)
Genome, Human/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation/genetics , Amino Acid Sequence , Animals , Carrier Proteins/genetics , DNA Mutational Analysis , Humans , Karyopherins/genetics , Molecular Sequence Data , Myeloid Differentiation Factor 88/chemistry , Myeloid Differentiation Factor 88/genetics , Receptor, Notch1/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Reproducibility of Results , Exportin 1 Protein
20.
Blood ; 123(13): 1979-80, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24677400

ABSTRACT

In this issue of Blood, Allinne et al propose the nucleolin-dependent activation of the translocated CCND1 allele in mantle cell lymphoma (MCL) because of its relocalization to a transcriptionally favorable area in the perinucleolar region.


Subject(s)
Cell Nucleolus/metabolism , Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Mantle-Cell/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Transcriptional Activation , Humans , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL