Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Cell ; 185(22): 4153-4169.e19, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36306735

ABSTRACT

Genetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aß plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2R47H variant associated with high AD risk fails to activate microglia via SYK. We found that SYK-deficient microglia cannot encase Aß plaques, accelerating brain pathology and behavioral deficits. SYK deficiency impaired the PI3K-AKT-GSK-3ß-mTOR pathway, incapacitating anabolic support required for attaining the DAM profile. However, SYK-deficient microglia proliferated and advanced to an Apoe-expressing prodromal stage of DAM; this pathway relied on the adapter DAP10, which also binds TREM2. Thus, microglial responses to Aß involve non-redundant SYK- and DAP10-pathways. Systemic administration of an antibody against CLEC7A, a receptor that directly activates SYK, rescued microglia activation in mice expressing the TREM2R47H allele, unveiling new options for AD immunotherapy.


Subject(s)
Alzheimer Disease , Microglia , Animals , Mice , Humans , Microglia/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Plaque, Amyloid/metabolism , Brain/metabolism , Disease Models, Animal , Syk Kinase/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
2.
Immunity ; 57(6): 1394-1412.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38821054

ABSTRACT

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we generated an inducible Cre driver line, Clec7a-CreERT2, that targets PAMs and DAMs in the brain parenchyma. Utilizing this tool, we profiled labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM and DAM gene expression. Through long-term tracking, we demonstrated microglial state plasticity. Lastly, we specifically depleted DAMs in demyelination, revealing their roles in disease recovery. Together, we provide a versatile genetic tool to characterize microglial states in CNS development and disease.


Subject(s)
Cell Plasticity , Microglia , Remyelination , Microglia/physiology , Animals , Mice , Cell Plasticity/genetics , Demyelinating Diseases/genetics , Mice, Inbred C57BL , Mice, Transgenic , Disease Models, Animal , Brain , Myelin Sheath/metabolism , White Matter/pathology
3.
Cell ; 170(4): 649-663.e13, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28802038

ABSTRACT

Elevated risk of developing Alzheimer's disease (AD) is associated with hypomorphic variants of TREM2, a surface receptor required for microglial responses to neurodegeneration, including proliferation, survival, clustering, and phagocytosis. How TREM2 promotes such diverse responses is unknown. Here, we find that microglia in AD patients carrying TREM2 risk variants and TREM2-deficient mice with AD-like pathology have abundant autophagic vesicles, as do TREM2-deficient macrophages under growth-factor limitation or endoplasmic reticulum (ER) stress. Combined metabolomics and RNA sequencing (RNA-seq) linked this anomalous autophagy to defective mammalian target of rapamycin (mTOR) signaling, which affects ATP levels and biosynthetic pathways. Metabolic derailment and autophagy were offset in vitro through Dectin-1, a receptor that elicits TREM2-like intracellular signals, and cyclocreatine, a creatine analog that can supply ATP. Dietary cyclocreatine tempered autophagy, restored microglial clustering around plaques, and decreased plaque-adjacent neuronal dystrophy in TREM2-deficient mice with amyloid-ß pathology. Thus, TREM2 enables microglial responses during AD by sustaining cellular energetic and biosynthetic metabolism.


Subject(s)
Alzheimer Disease/pathology , Energy Metabolism , Membrane Glycoproteins/metabolism , Microglia/metabolism , Receptors, Immunologic/metabolism , AMP-Activated Protein Kinases/metabolism , Alzheimer Disease/metabolism , Animals , Autophagy , Creatinine/analogs & derivatives , Creatinine/metabolism , Disease Models, Animal , Humans , Lectins, C-Type/metabolism , Macrophages/metabolism , Membrane Glycoproteins/genetics , Mice , Microglia/pathology , Neurites/metabolism , Plaque, Amyloid/metabolism , Receptors, Immunologic/genetics , TOR Serine-Threonine Kinases/metabolism
4.
Proc Natl Acad Sci U S A ; 121(10): e2321910121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422018

ABSTRACT

Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Bacteroides thetaiotaomicron/genetics , Sigma Factor , Phylogeny
5.
Nat Immunol ; 15(9): 846-55, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086775

ABSTRACT

Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.


Subject(s)
CD36 Antigens/immunology , Fatty Acids/metabolism , Interleukin-4/immunology , Lipolysis/immunology , Lysosomes/immunology , Macrophage Activation/immunology , Macrophages/immunology , Oxidative Phosphorylation , Signal Transduction/immunology , Sterol Esterase/immunology , Animals , Cell Respiration , Helminthiasis, Animal/immunology , Humans , Mice , Oxygen Consumption , Receptors, Interleukin-4/immunology , Transcriptome
6.
Proc Natl Acad Sci U S A ; 120(45): e2308214120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903272

ABSTRACT

Diabetic retinopathy (DR) is a neurovascular complication of diabetes. Recent investigations have suggested that early degeneration of the neuroretina may occur prior to the appearance of microvascular changes; however, the mechanisms underlying this neurodegeneration have been elusive. Microglia are the predominant resident immune cell in the retina and adopt dynamic roles in disease. Here, we show that ablation of retinal microglia ameliorates visual dysfunction and neurodegeneration in a type I diabetes mouse model. We also provide evidence of enhanced microglial contact and engulfment of amacrine cells, ultrastructural modifications, and transcriptome changes that drive inflammation and phagocytosis. We show that CD200-CD200R signaling between amacrine cells and microglia is dysregulated during early DR and that targeting CD200R can attenuate high glucose-induced inflammation and phagocytosis in cultured microglia. Last, we demonstrate that targeting CD200R in vivo can prevent visual dysfunction, microglia activation, and retinal inflammation in the diabetic mouse. These studies provide a molecular framework for the pivotal role that microglia play in early DR pathogenesis and identify a potential immunotherapeutic target for treating DR in patients.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Humans , Mice , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Inflammation/metabolism , Microglia/metabolism , Retina/metabolism , Signal Transduction
7.
PLoS Pathog ; 19(6): e1011088, 2023 06.
Article in English | MEDLINE | ID: mdl-37352334

ABSTRACT

Macrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear. We found that Gal-9 binds directly to Mycobacterium tuberculosis (Mtb) and Salmonella enterica serovar Typhimurium (Stm) and localizes to Mtb in macrophages. To determine the combined contribution of membrane damage-sensing galectins to immunity, we generated Gal-3, -8, and -9 triple knockout (TKO) mice. Mtb infection of primary macrophages from TKO mice resulted in defective autophagic flux but normal bacterial replication. Surprisingly, these mice had no discernable defect in resistance to acute infection with Mtb, Stm or Listeria monocytogenes, and had only modest impairments in bacterial growth restriction and CD4 T cell activation during chronic Mtb infection. Collectively, these findings indicate that while Gal-3, -8, and -9 respond to an array of intracellular pathogens, together these membrane damage-sensing galectins play a limited role in host resistance to bacterial infection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , Galectin 3/genetics , Tuberculosis/metabolism , Galectins/genetics , Galectins/metabolism , Macrophages , Salmonella typhimurium , Mice, Knockout
8.
Blood ; 139(19): 2855-2870, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35357446

ABSTRACT

The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.


Subject(s)
Granulomatous Disease, Chronic , Lung , Macrophages, Alveolar , NADPH Oxidase 2 , Animals , Cytokines , Granulomatous Disease, Chronic/genetics , Homeostasis , Lung/physiology , Mice , Mice, Inbred C57BL , NADPH Oxidase 2/genetics
9.
PLoS Pathog ; 17(8): e1009802, 2021 08.
Article in English | MEDLINE | ID: mdl-34370792

ABSTRACT

Multidrug-resistant Acinetobacter baumannii infections are increasing at alarming rates. Therefore, novel antibiotic-sparing treatments to combat these A. baumannii infections are urgently needed. The development of these interventions would benefit from a better understanding of this bacterium's pathobiology, which remains poorly understood. A. baumannii is regarded as an extracellular opportunistic pathogen. However, research on Acinetobacter has largely focused on common lab strains, such as ATCC 19606, that have been isolated several decades ago. These strains exhibit reduced virulence when compared to recently isolated clinical strains. In this work, we demonstrate that, unlike ATCC 19606, several modern A. baumannii clinical isolates, including the recent clinical urinary isolate UPAB1, persist and replicate inside macrophages within spacious vacuoles. We show that intracellular replication of UPAB1 is dependent on a functional type I secretion system (T1SS) and pAB5, a large conjugative plasmid that controls the expression of several chromosomally-encoded genes. Finally, we show that UPAB1 escapes from the infected macrophages by a lytic process. To our knowledge, this is the first report of intracellular growth and replication of A. baumannii. We suggest that intracellular replication within macrophages may contribute to evasion of the immune response, dissemination, and antibiotic tolerance of A. baumannii.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/physiology , Bacterial Proteins/metabolism , Biofilms/growth & development , Macrophages/microbiology , Type I Secretion Systems/metabolism , Vacuoles/microbiology , Acinetobacter Infections/metabolism , Animals , Mice
10.
Acta Neuropathol ; 145(6): 749-772, 2023 06.
Article in English | MEDLINE | ID: mdl-37115208

ABSTRACT

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood. Here, we investigate the mechanisms by which a homozygous stop-gain TREM2 mutation (p.Q33X) contributes to NHD. Induced pluripotent stem cell (iPSC)-derived microglia (iMGLs) were generated from two NHD families: three homozygous TREM2 p.Q33X mutation carriers (termed NHD), two heterozygous mutation carriers, one related non-carrier, and two unrelated non-carriers. Transcriptomic and biochemical analyses revealed that iMGLs from NHD patients exhibited lysosomal dysfunction, downregulation of cholesterol genes, and reduced lipid droplets compared to controls. Also, NHD iMGLs displayed defective activation and HLA antigen presentation. This defective activation and lipid droplet content were restored by enhancing lysosomal biogenesis through mTOR-dependent and independent pathways. Alteration in lysosomal gene expression, such as decreased expression of genes implicated in lysosomal acidification (ATP6AP2) and chaperone mediated autophagy (LAMP2), together with reduction in lipid droplets were also observed in post-mortem brain tissues from NHD patients, thus closely recapitulating in vivo the phenotype observed in iMGLs in vitro. Our study provides the first cellular and molecular evidence that the TREM2 p.Q33X mutation in microglia leads to defects in lysosomal function and that compounds targeting lysosomal biogenesis restore a number of NHD microglial defects. A better understanding of how microglial lipid metabolism and lysosomal machinery are altered in NHD and how these defects impact microglia activation may provide new insights into mechanisms underlying NHD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Microglia , Adult , Humans , Microglia/metabolism , Lipid Metabolism/genetics , Loss of Function Mutation , Mutation/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Prorenin Receptor
11.
J Virol ; 91(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28179532

ABSTRACT

The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.


Subject(s)
Disease Models, Animal , Herpesviridae/classification , Herpesvirus 6, Human/genetics , Herpesvirus 7, Human/genetics , Lymphocyte Depletion , Roseolovirus Infections/virology , Animals , Base Sequence , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , DNA, Viral/genetics , Genome, Viral/genetics , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Lymphocyte Count , Mice , Mice, Inbred BALB C , Open Reading Frames/genetics , Phylogeny , Sequence Analysis, DNA , Thymus Gland/virology
12.
EMBO J ; 32(24): 3130-44, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24185898

ABSTRACT

Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi-vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3-positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3-positive vacuole-associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion.


Subject(s)
Autophagy , Goblet Cells/metabolism , Microtubule-Associated Proteins/metabolism , Reactive Oxygen Species/metabolism , Animals , Autophagy-Related Protein 5 , Cells, Cultured , Colon/cytology , Endocytosis , Epithelial Cells/metabolism , Goblet Cells/cytology , Goblet Cells/physiology , Mice , Mice, Mutant Strains , Microtubule-Associated Proteins/genetics , Mucins/metabolism , Mutation , NADPH Oxidases/metabolism , Phagosomes/metabolism , Vesicular Transport Proteins/metabolism
13.
Appl Environ Microbiol ; 83(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28687645

ABSTRACT

Streptococcus mutans is known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen. S. mutans strains deficient in rgpG, encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. The rgpG deficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, the rgpG mutant existed primarily in chains of swollen, "squarish" dividing cells. Deficiency of rgpG also causes significant reduction in biofilm formation (P < 0.01). Double and triple mutants with deficiency in brpA and/or psr, genes coding for the LytR-CpsA-Psr family proteins BrpA and Psr, which were previously shown to play important roles in cell envelope biogenesis, were constructed using the rgpG mutant. There were no major differences in growth rates between the wild-type strain and the rgpG brpA and rgpG psr double mutants, but the growth rate of the rgpG brpA psr triple mutant was reduced drastically (P < 0.001). Under transmission electron microscopy, both double mutants resembled the rgpG mutant, while the triple mutant existed as giant cells with multiple asymmetric septa. When analyzed by immunoblotting, the rgpG mutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and the brpA and psr single mutants. These results suggest that RgpG in S. mutans plays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope.IMPORTANCEStreptococcus mutans, a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation by S. mutans, indicative of a significant role of RGP in cell division and biofilm formation in S. mutans These results are novel not only in S. mutans, but also other streptococci that produce RGP. This study also shows that the LytR-CpsA-Psr family proteins BrpA and Psr in S. mutans are involved in attachment of RGP and probably other cell wall glycopolymers to the peptidoglycan. In addition, the results also suggest that BrpA and Psr may play a direct role in cell division and biofilm formation in S. mutans This study reveals new potential targets to develop anticaries therapeutics.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Biofilms , Cell Wall/metabolism , Streptococcus mutans/enzymology , Streptococcus mutans/physiology , Transcription Factors/metabolism , Transferases/metabolism , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cell Division , Cell Wall/genetics , Culture Media/chemistry , Culture Media/metabolism , Gene Expression Regulation, Bacterial , Streptococcus mutans/cytology , Streptococcus mutans/genetics , Transcription Factors/genetics , Transferases/genetics
14.
Proc Natl Acad Sci U S A ; 110(30): E2838-47, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23836641

ABSTRACT

Residence within a customized vacuole is a highly successful strategy used by diverse intracellular microorganisms. The parasitophorous vacuole membrane (PVM) is the critical interface between Plasmodium parasites and their possibly hostile, yet ultimately sustaining, host cell environment. We show that torins, developed as ATP-competitive mammalian target of rapamycin (mTOR) kinase inhibitors, are fast-acting antiplasmodial compounds that unexpectedly target the parasite directly, blocking the dynamic trafficking of the Plasmodium proteins exported protein 1 (EXP1) and upregulated in sporozoites 4 (UIS4) to the liver stage PVM and leading to efficient parasite elimination by the hepatocyte. Torin2 has single-digit, or lower, nanomolar potency in both liver and blood stages of infection in vitro and is likewise effective against both stages in vivo, with a single oral dose sufficient to clear liver stage infection. Parasite elimination and perturbed trafficking of liver stage PVM-resident proteins are both specific aspects of torin-mediated Plasmodium liver stage inhibition, indicating that torins have a distinct mode of action compared with currently used antimalarials.


Subject(s)
Antimalarials/pharmacology , Liver/parasitology , Membrane Proteins/metabolism , Naphthyridines/pharmacology , Plasmodium/drug effects , Animals , Plasmodium/metabolism , Vacuoles/metabolism
15.
PLoS Pathog ; 9(4): e1003320, 2013.
Article in English | MEDLINE | ID: mdl-23633952

ABSTRACT

IFN-γ activates cells to restrict intracellular pathogens by upregulating cellular effectors including the p65 family of guanylate-binding proteins (GBPs). Here we test the role of Gbp1 in the IFN-γ-dependent control of T. gondii in the mouse model. Virulent strains of T. gondii avoided recruitment of Gbp1 to the parasitophorous vacuole in a strain-dependent manner that was mediated by the parasite virulence factors ROP18, an active serine/threonine kinase, and the pseudokinase ROP5. Increased recruitment of Gbp1 to Δrop18 or Δrop5 parasites was associated with clearance in IFN-γ-activated macrophages in vitro, a process dependent on the autophagy protein Atg5. The increased susceptibility of Δrop18 mutants in IFN-γ-activated macrophages was reverted in Gbp1(-/-) cells, and decreased virulence of this mutant was compensated in Gbp1(-/-) mice, which were also more susceptible to challenge with type II strain parasites of intermediate virulence. These findings demonstrate that Gbp1 plays an important role in the IFN-γ-dependent, cell-autonomous control of toxoplasmosis and predict a broader role for this protein in host defense.


Subject(s)
GTP-Binding Proteins/metabolism , Interferon-gamma/metabolism , Macrophages/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Animals , Autophagy-Related Protein 5 , Bone Marrow Cells/cytology , Cells, Cultured , GTP-Binding Proteins/genetics , Immunity, Cellular , Macrophage Activation/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protozoan Proteins , Toxoplasma/pathogenicity , Toxoplasmosis/parasitology
16.
J Biol Chem ; 288(31): 22721-33, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23766511

ABSTRACT

The LmxGT1 glucose transporter is selectively targeted to the flagellum of the kinetoplastid parasite Leishmania mexicana, but the mechanism for targeting this and other flagella-specific membrane proteins among the Kinetoplastida is unknown. To address the mechanism of flagellar targeting, we employed in vivo cross-linking, tandem affinity purification, and mass spectrometry to identify a novel protein, KHARON1 (KH1), which is important for the flagellar trafficking of LmxGT1. Kh1 null mutant parasites are strongly impaired in flagellar targeting of LmxGT1, and trafficking of the permease was arrested in the flagellar pocket. Immunolocalization revealed that KH1 is located at the base of the flagellum, within the flagellar pocket, where it associates with the proximal segment of the flagellar axoneme. We propose that KH1 mediates transit of LmxGT1 from the flagellar pocket into the flagellar membrane via interaction with the proximal portion of the flagellar axoneme. KH1 represents the first component involved in flagellar trafficking of integral membrane proteins among parasitic protozoa. Of considerable interest, Kh1 null mutants are strongly compromised for growth as amastigotes within host macrophages. Thus, KH1 is also important for the disease causing stage of the parasite life cycle.


Subject(s)
Flagella/metabolism , Glucose/metabolism , Leishmania mexicana/metabolism , Monosaccharide Transport Proteins/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Base Sequence , Chromatography, Affinity , DNA Primers , Molecular Sequence Data , Protein Transport , Protozoan Proteins/chemistry , Sequence Homology, Amino Acid
17.
Microbiology (Reading) ; 160(Pt 1): 67-78, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24190982

ABSTRACT

Streptococcus mutans, the primary aetiological agent of dental caries, possesses an YjeE-like protein that is encoded by locus SMU.409, herein designated brpB. In this study, a BrpB-deficient mutant, JB409, and a double mutant deficient of BrpB and BrpA (a paralogue of the LytR-CpsA-Psr family of cell wall-associated proteins), JB819, were constructed and characterized using function assays and microscopy analysis. Both JB409 and JB819 displayed extended lag phases and drastically slowed growth rates during growth in brain heart infusion medium as compared to the wild-type, UA159. Relative to UA159, JB409 and JB819 were more than 60- and 10-fold more susceptible to acid killing at pH 2.8, and more than 1 and 2 logs more susceptible to hydrogen peroxide, respectively. Complementation of the deficient mutants with a wild-type copy of the respective gene(s) partly restored the acid and oxidative stress responses to a level similar to the wild-type. As compared to UA159, biofilm formation by JB409 and JB819 was drastically reduced (P<0.001), especially during growth in medium containing sucrose. Under a scanning electron microscope, JB409 had significantly more giant cells with an elongated, rod-like morphology, and JB819 formed marble-like super cells with apparent defects in cell division. As revealed by transmission electron microscopy analysis, BrpB deficiency in both JB409 and JB819 resulted in the development of low electron density patches and formation of a loose nucleoid structure. Taken together, these results suggest that BrpB likely functions together with BrpA in regulating cell envelope biogenesis/homeostasis in Strep. mutans. Further studies are under way to elucidate the mechanism that underlies the BrpA- and BrpB-mediated regulation.


Subject(s)
Bacterial Proteins/genetics , Biofilms/growth & development , Cell Division , Gene Expression Regulation, Bacterial , Streptococcus mutans/physiology , Streptococcus mutans/ultrastructure , Stress, Physiological , Acids/toxicity , Bacterial Proteins/metabolism , Culture Media/chemistry , Gene Knockout Techniques , Genetic Complementation Test , Hydrogen Peroxide/toxicity , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Streptococcus mutans/drug effects , Streptococcus mutans/genetics
18.
Eukaryot Cell ; 12(7): 1009-19, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23687115

ABSTRACT

SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.


Subject(s)
Biological Evolution , Flagella/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Actin Cytoskeleton/metabolism , Axoneme/metabolism , Axoneme/ultrastructure , Cilia/metabolism , Flagella/ultrastructure , Protein Transport , Recombinant Fusion Proteins/metabolism , Toxoplasma/ultrastructure
19.
Proc Natl Acad Sci U S A ; 108(32): 13275-80, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21788485

ABSTRACT

The commitment of Plasmodium merozoites to invade red blood cells (RBCs) is marked by the formation of a junction between the merozoite and the RBC and the coordinated induction of the parasitophorous vacuole. Despite its importance, the molecular events underlying the parasite's commitment to invasion are not well understood. Here we show that the interaction of two parasite proteins, RON2 and AMA1, known to be critical for invasion, is essential to trigger junction formation. Using antibodies (Abs) that bind near the hydrophobic pocket of AMA1 and AMA1 mutated in the pocket, we identified RON2's binding site on AMA1. Abs specific for the AMA1 pocket blocked junction formation and the induction of the parasitophorous vacuole. We also identified the critical residues in the RON2 peptide (previously shown to bind AMA1) that are required for binding to the AMA1 pocket, namely, two conserved, disulfide-linked cysteines. The RON2 peptide blocked junction formation but, unlike the AMA1-specific Ab, did not block formation of the parasitophorous vacuole, indicating that formation of the junction and parasitophorous vacuole are molecularly distinct steps in the invasion process. Collectively, these results identify the binding of RON2 to the hydrophobic pocket of AMA1 as the step that commits Plasmodium merozoites to RBC invasion and point to RON2 as a potential vaccine candidate.


Subject(s)
Merozoites/metabolism , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Binding Sites , Conserved Sequence/genetics , Cysteine/metabolism , Cytochalasin D/pharmacology , Erythrocytes/drug effects , Erythrocytes/parasitology , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/metabolism , Hydrophobic and Hydrophilic Interactions/drug effects , Merozoites/drug effects , Merozoites/ultrastructure , Models, Biological , Molecular Sequence Data , Plasmodium falciparum/drug effects , Plasmodium falciparum/ultrastructure , Protein Binding/drug effects , Protein Transport/drug effects , Protozoan Proteins/chemistry , Structure-Activity Relationship
20.
Nat Commun ; 15(1): 380, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191884

ABSTRACT

Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the tricarboxylic acid cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Cryptosporidium parvum/genetics , Glucose , Phosphates , Escherichia coli , Hexokinase
SELECTION OF CITATIONS
SEARCH DETAIL