Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Radiol Prot ; 42(2)2022 05 03.
Article in English | MEDLINE | ID: mdl-35502472

ABSTRACT

In response to changing international recommendations and national requirements, a number of assessment approaches, and associated tools and models, have been developed over the last circa 20 years to assess radiological risk to wildlife. In this paper, we summarise international intercomparison exercises and scenario applications of available radiological assessment models for wildlife to aid future model users and those such as regulators who interpret assessments. Through our studies, we have assessed the fitness for purpose of various models and tools, identified the major sources of uncertainty and made recommendations on how the models and tools can best be applied to suit the purposes of an assessment. We conclude that the commonly used tiered or graded assessment tools are generally fit for purpose for conducting screening-level assessments of radiological impacts to wildlife. Radiological protection of the environment (or wildlife) is still a relatively new development within the overall system of radiation protection and environmental assessment approaches are continuing to develop. Given that some new/developing approaches differ considerably from the more established models/tools and there is an increasing international interest in developing approaches that support the effective regulation of multiple stressors (including radiation), we recommend the continuation of coordinated international programmes for model development, intercomparison and scenario testing.


Subject(s)
Animals, Wild , Nuclear Energy , Animals , International Agencies , Radiography , Risk Assessment
2.
Radiat Environ Biophys ; 50(2): 231-51, 2011 May.
Article in English | MEDLINE | ID: mdl-21113609

ABSTRACT

An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.


Subject(s)
Ducks/metabolism , Flatfishes/metabolism , Models, Biological , Oligochaeta/metabolism , Radioisotopes/pharmacokinetics , Radiometry/methods , Rats/metabolism , Absorption , Animals , Biodiversity , Body Burden , Computer Simulation , Radiation Dosage , Radioisotopes/analysis , Relative Biological Effectiveness , Species Specificity
3.
J Radiol Prot ; 30(2): 265-81, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20530864

ABSTRACT

A number of models are being used to assess the potential environmental impact of releases of radioactivity. These often use a tiered assessment structure whose first tier is designed to be highly conservative and simple to use. An aim of using this initial tier is to identify sites of negligible concern and to remove them from further consideration with a high degree of confidence. In this paper we compare the screening assessment outputs of three freely available models. The outputs of these models varied considerably in terms of estimated risk quotient (RQ) and the radionuclide-organism combinations identified as being the most limiting. A number of factors are identified as contributing to this variability: values of transfer parameters (concentration ratios and K(d)) used; organisms considered; different input options and how these are utilised in the assessment; assumptions as regards secular equilibrium; geometries and exposure scenarios. This large variation in RQ values between models means that the level of confidence required by users is not achieved. We recommend that the factors contributing to the variation in screening assessments be subjected to further investigation so that they can be more fully understood and assessors (and those reviewing assessment outputs) can better justify and evaluate the results obtained.


Subject(s)
Conservation of Natural Resources/methods , Environmental Exposure/prevention & control , Environmental Pollution/prevention & control , Government Regulation , Guidelines as Topic , Radiation Injuries/prevention & control , Radiation Injuries/veterinary , Radiation Monitoring/standards , Animals , Ecosystem , Radiation, Ionizing
4.
J Radiol Prot ; 30(2): 195-214, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20530867

ABSTRACT

The outcome of the PROTECT project (Protection of the Environment from Ionising Radiation in a Regulatory Context) is summarised, focusing on the protection goal and derivation of dose rates which may detrimentally affect wildlife populations. To carry out an impact assessment for radioactive substances, the estimated dose rates produced by assessment tools need to be compared with some form of criteria to judge the level of risk. To do this, appropriate protection goals need to be defined and associated predefined dose rate values, or benchmarks, derived and agreed upon. Previous approaches used to estimate dose rates at which there may be observable changes in populations or individuals are described and discussed, as are more recent derivations of screening benchmarks for use in regulatory frameworks. We have adopted guidance and procedures used for assessment and regulation of other chemical stressors to derive benchmarks. On the basis of consultation with many relevant experts, PROTECT has derived a benchmark screening dose rate, using data on largely reproductive effects to derive species sensitivity distributions, of 10 microGy h(-1) which can be used to identify situations which are below regulatory concern with a high degree of confidence.


Subject(s)
Conservation of Natural Resources/methods , Environmental Exposure/prevention & control , Environmental Pollution/prevention & control , Government Regulation , Guidelines as Topic , Radiation Injuries/prevention & control , Radiation Injuries/veterinary , Radiation Monitoring/standards , Animals , Ecosystem , Radiation, Ionizing , United Kingdom
5.
J Radiol Prot ; 30(2): 299-340, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20530860

ABSTRACT

Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) programme, activity concentrations of (60)Co, (90)Sr, (137)Cs and (3)H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophic level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.


Subject(s)
Fresh Water/analysis , Models, Biological , Plants , Radiation Monitoring/methods , Radioisotopes/analysis , Radioisotopes/pharmacokinetics , Animals , Canada , Computer Simulation , Internationality , Species Specificity
6.
Health Phys ; 90(5): 485-93, 2006 May.
Article in English | MEDLINE | ID: mdl-16607180

ABSTRACT

Due to the increasing interest in environmental protection against ionizing radiation on the international scene, the need for operational tools for radiological environmental risk assessment is becoming critical. Within this framework, this paper puts forward a fast and user-friendly computerized method to allow the transformation from exposure (expressed in Bq per unit of mass or volume) to dose (i.e., the energy deposited in the organism, expressed in Gy) received from any radionuclide by any non-human species, for a unit of time and a unit of "concentration" of radionuclide in the radiation source. The calculation principles used to determine this dose coefficient, expressed in Gy/unit of time per Bq/unit of volume or mass, are described for gamma, beta, and alpha radiation. Both internal and external exposure situations are considered. The domain of validity of the proposed model is specified, as is the way in which it has been computerized. The paper concludes by verifying the numerical accuracy of the tool and making initial comparisons between results from the described method and those developed at the European level.


Subject(s)
Algorithms , Linear Energy Transfer/physiology , Radiation Monitoring/methods , Radioisotopes/analysis , Software , Whole-Body Counting/methods , Animals , Body Burden , Feasibility Studies , Humans , Radiation Dosage , Relative Biological Effectiveness
7.
J Environ Radioact ; 151 Pt 1: 204-208, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26492396

ABSTRACT

Within a recent model intercomparison about radiological risk assessment for contaminated wetlands, the influence of soil saturation conditions on external dose rates was evidenced. This issue joined concerns of assessors regarding the choice of the soil moisture value to input in radiological assessment tools such as the ERICA Tool. Does it really influence the assessment results and how? This question was investigated under IAEA's Modelling and Data for Radiological Impacts Assessments (MODARIA) programme via 42 scenarios for which the soil water content varied from 0 (dry soil) to 100% (saturated soil), in combination with other parameters that may influence the values of the external dose conversion coefficients (DCCs) calculated for terrestrial organisms exposed in soil. A set of α, ß, and γ emitters was selected in order to cover the range of possible emission energies. The values of their external DCCs varied generally within a factor 1 to 1.5 with the soil water content, excepted for ß emitters that appeared more sensitive (DCCs within a factor of about 3). This may be of importance for some specific cases or for upper tiers of radiological assessments, when refinement is required. But for the general purpose of screening assessment of radiological impact on fauna and flora, current approaches regarding the soil water content are relevant.


Subject(s)
Radiation Dosage , Radiation Monitoring/methods , Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Water/analysis , Animals , Invertebrates/metabolism , Models, Theoretical , Risk Assessment , Vertebrates/metabolism , Wetlands
8.
J Environ Radioact ; 153: 31-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26717350

ABSTRACT

We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters.


Subject(s)
Aquatic Organisms/metabolism , Cesium Radioisotopes/metabolism , Iodine Radioisotopes/metabolism , Models, Theoretical , Radiation Monitoring/methods , Strontium Radioisotopes/metabolism , Water Pollutants, Radioactive/metabolism , Animals , Crustacea/metabolism , Fishes/metabolism , Mollusca/metabolism , Seaweed/metabolism
9.
J Environ Radioact ; 139: 91-102, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25464045

ABSTRACT

SYMBIOSE is a modelling platform that accounts for variability and uncertainty in radiological impact assessments, when simulating the environmental fate of radionuclides and assessing doses to human populations. The default database of SYMBIOSE is partly based on parameter values that are summarized within International Atomic Energy Agency (IAEA) documents. To characterize uncertainty on the transfer parameters, 331 Probability Distribution Functions (PDFs) were defined from the summary statistics provided within the IAEA documents (i.e. sample size, minimal and maximum values, arithmetic and geometric means, standard and geometric standard deviations) and are made available as spreadsheet files. The methods used to derive the PDFs without complete data sets, but merely the summary statistics, are presented. Then, a simple case-study illustrates the use of the database in a second-order Monte Carlo calculation, separating parametric uncertainty and inter-individual variability.


Subject(s)
Radioisotopes/analysis , Uncertainty
10.
J Environ Radioact ; 150: 270-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26378959

ABSTRACT

The equilibrium concentration ratio is typically the parameter used to estimate organism activity concentrations within wildlife dose assessment tools. Whilst this is assumed to be fit for purpose, there are scenarios such as accidental or irregular, fluctuating, releases from licensed facilities when this might not be the case. In such circumstances, the concentration ratio approach may under- or over-estimate radiation exposure depending upon the time since the release. To carrying out assessments for such releases, a dynamic approach is needed. The simplest and most practical option is representing the uptake and turnover processes by first-order kinetics, for which organism- and element-specific biological half-life data are required. In this paper we describe the development of a freely available international database of radionuclide biological half-life values. The database includes 1907 entries for terrestrial, freshwater, riparian and marine organisms. Biological half-life values are reported for 52 elements across a range of wildlife groups (marine = 9, freshwater = 10, terrestrial = 7 and riparian = 3 groups). Potential applications and limitations of the database are discussed.


Subject(s)
Animals, Wild/metabolism , Radiation Exposure , Radiation Monitoring/methods , Radioactive Pollutants/metabolism , Radioisotopes/metabolism , Animals , Databases, Factual , Half-Life
11.
Health Phys ; 83(4): 539-42, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12240730

ABSTRACT

The CASTEAUR project proposes a simplified tool to assess the transfer of radionuclides between and in the main biotic and abiotic components of the freshwater ecosystem. Applied to phenomenological modeling, various hypotheses simplify the transfer equations, which, when programmed under Excel, can be readily dispatched and used. CASTEAUR can be used as an assessment tool for impact studies of accidental release as well as "routine" release. This code is currently being tested on the Rhone River, downstream from a nuclear reprocessing plant. The first results are reported to illustrate the possibilities offered by CASTEAUR.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Radioisotopes , Water Pollutants, Radioactive/analysis , Algorithms , Cesium Radioisotopes/analysis , Ecology , Monte Carlo Method , Software
12.
J Environ Radioact ; 138: 60-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25170547

ABSTRACT

The classical approach to environmental radioprotection is based on the assumption of homogeneously contaminated media. However, in soils and sediments there may be a significant variation of radioactivity with depth. The effect of this heterogeneity was investigated by examining the external exposure of various sediment and soil organisms, and determining the resulting dose rates, assuming a realistic combination of locations and radionuclides. The results were dependent on the exposure situation, i.e., the organism, its location, and the quality and quantity of radionuclides. The dose rates ranged over three orders of magnitude. The assumption of homogeneous contamination was not consistently conservative (if associated with a level of radioactivity averaged over the full thickness of soil or sediment that was sampled). Dose assessment for screening purposes requires consideration of the highest activity concentration measured in a soil/sediment that is considered to be homogeneously contaminated. A more refined assessment (e.g., higher tier of a graded approach) should take into consideration a more realistic contamination profile, and apply different dosimetric approaches.


Subject(s)
Invertebrates/metabolism , Soil Pollutants, Radioactive/analysis , Vertebrates/metabolism , Water Pollutants, Radioactive/analysis , Alberta , Animals , Dose-Response Relationship, Radiation , Geologic Sediments/analysis , Ukraine
13.
Sci Total Environ ; 490: 161-70, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24852614

ABSTRACT

In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 µGy h(-1). These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H'). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 µGy h(-1). This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might result from a selection at the expense of sensitive species after the accident.


Subject(s)
Chernobyl Nuclear Accident , Nematoda/chemistry , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Animals , Ecosystem
14.
J Environ Radioact ; 121: 12-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22336569

ABSTRACT

The discrepancy between laboratory or controlled conditions ecotoxicity tests and field data on wildlife chronically exposed to ionising radiation is presented for the first time. We reviewed the available chronic radiotoxicity data acquired in contaminated fields and used a statistical methodology to support the comparison with knowledge on inter-species variation of sensitivity to controlled external γ irradiation. We focus on the Chernobyl Exclusion Zone and effects data on terrestrial wildlife reported in the literature corresponding to chronic dose rate exposure situations (from background ~100 nGy/h up to ~10 mGy/h). When needed, we reconstructed the dose rate to organisms and obtained consistent unbiased data sets necessary to establish the dose rate-effect relationship for a number of different species and endpoints. Then, we compared the range of variation of radiosensitivity of species from the Chernobyl-Exclusion Zone with the statistical distribution established for terrestrial species chronically exposed to purely gamma external irradiation (or chronic Species radioSensitivity Distribution - SSD). We found that the best estimate of the median value (HDR50) of the distribution established for field conditions at Chernobyl (about 100 µGy/h) was eight times lower than the one from controlled experiments (about 850 µGy/h), suggesting that organisms in their natural environmental were more sensitive to radiation. This first comparison highlights the lack of mechanistic understanding and the potential confusion coming from sampling strategies in the field. To confirm the apparent higher sensitive of wildlife in the Chernobyl Exclusion Zone, we call for more a robust strategy in field, with adequate design to deal with confounding factors.


Subject(s)
Dose-Response Relationship, Radiation , Environmental Exposure , Radiation Tolerance , Toxicity Tests, Chronic/methods , Animals , Animals, Wild , Birds , Chernobyl Nuclear Accident , Databases, Factual , Gamma Rays , Insecta , Plants/radiation effects , Radiation, Ionizing , Risk Assessment , Species Specificity , Ukraine , Vertebrates
15.
J Environ Radioact ; 115: 73-82, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22885152

ABSTRACT

With intentions of integrating a portion of their respective research efforts into a trans-national programme that will enhance radioecology, eight European organisations recently formed the European Radioecology ALLIANCE (www.er-alliance.org). The ALLIANCE is an Association open to other organisations throughout the world with similar interests in promoting radioecology. The ALLIANCE members recognised that their shared radioecological research could be enhanced by efficiently pooling resources among its partner organizations and prioritising group efforts along common themes of mutual interest. A major step in this prioritisation process was to develop a Strategic Research Agenda (SRA). An EC-funded Network of Excellence in Radioecology, called STAR (Strategy for Allied Radioecology), was formed, in part, to develop the SRA. This document is the first published draft of the SRA. The SRA outlines a suggested prioritisation of research topics in radioecology, with the goal of improving research efficiency and more rapidly advancing the science. It responds to the question: "What topics, if critically addressed over the next 20 years, would significantly advance radioecology?" The three Scientific Challenges presented within the SRA, with their 15 associated research lines, are a strategic vision of what radioecology can achieve in the future. Meeting these challenges will require a directed effort and collaboration with many organisations the world over. Addressing these challenges is important to the advancement of radioecology and in providing scientific knowledge to decision makers. Although the development of the draft SRA has largely been a European effort, the hope is that it will initiate an open dialogue within the international radioecology community and its stakeholders. This is an abbreviated document with the intention of introducing the SRA and inviting contributions from interested stakeholders. Critique and input for improving the SRA are welcomed via a link on the STAR website (www.star-radioecology.org).


Subject(s)
Ecology , Radioactivity , Research , Environment , Radioactive Pollutants , Societies, Scientific
16.
Radiat Environ Biophys ; 46(4): 349-73, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17665210

ABSTRACT

A number of approaches have been proposed to estimate the exposure of non-human biota to ionizing radiation. This paper reports an inter-comparison of the unweighted absorbed dose rates for the whole organism (compared as dose conversion coefficients, or DCCs) for both internal and external exposure, estimated by 11 of these approaches for selected organisms from the Reference Animals and Plants geometries as proposed by the International Commission on Radiological Protection. Inter-comparison results indicate that DCCs for internal exposure compare well between the different approaches, whereas variation is greater for external exposure DCCs. Where variation among internal DCCs is greatest, it is generally due to different daughter products being included in the DCC of the parent. In the case of external exposures, particularly to low-energy beta-emitters, variations are most likely to be due to different media densities being assumed. On a radionuclide-by-radionuclide basis, the different approaches tend to compare least favourably for (3)H, (14)C and the alpha-emitters. This is consistent with models with different source/target geometry assumptions showing maximum variability in output for the types of radiation having the lowest range across matter. The intercomparison demonstrated that all participating approaches to biota dose calculation are reasonably comparable, despite a range of different assumptions being made.


Subject(s)
Biodiversity , Models, Biological , Plant Physiological Phenomena , Radiometry/methods , Animals , Body Burden , Computer Simulation , Humans , Radiation Dosage , Relative Biological Effectiveness , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL