Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Molecules ; 25(3)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024088

ABSTRACT

Today, plant fibers are considered as an important new renewable resource that can compete with some synthetic fibers, such as glass, in fiber-reinforced composites. In previous works, it was noted that the pectin-enriched middle lamella (ML) is a weak point in the fiber bundles for plant fiber-reinforced composites. ML is strongly bonded to the primary walls of the cells to form a complex layer called the compound middle lamella (CML). In a composite, cracks preferentially propagate along and through this layer when a mechanical loading is applied. In this work, middle lamellae of several plant fibers of different origin (flax, hemp, jute, kenaf, nettle, and date palm leaf sheath), among the most used for composite reinforcement, are investigated by atomic force microscopy (AFM). The peak-force quantitative nanomechanical property mapping (PF-QNM) mode is used in order to estimate the indentation modulus of this layer. AFM PF-QNM confirmed its potential and suitability to mechanically characterize and compare the stiffness of small areas at the micro and nanoscale level, such as plant cell walls and middle lamellae. Our results suggest that the mean indentation modulus of ML is in the range from 6 GPa (date palm leaf sheath) to 16 GPa (hemp), depending on the plant considered. Moreover, local cell-wall layer architectures were finely evidenced and described.


Subject(s)
Biopolymers/chemistry , Mechanical Phenomena , Plants/chemistry , Chemical Phenomena , Microscopy, Atomic Force , Spectrum Analysis
2.
Appl Environ Microbiol ; 85(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30902863

ABSTRACT

Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in plantaIMPORTANCEParaburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.


Subject(s)
Biofilms/growth & development , Burkholderiaceae/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Bacterial Proteins/genetics , Burkholderiaceae/cytology , Burkholderiaceae/genetics , Burkholderiaceae/growth & development , Carbon-Sulfur Lyases , Defensins/metabolism , HSP70 Heat-Shock Proteins/genetics , Mutation , Plant Immunity , Plant Roots/microbiology , Quorum Sensing/genetics , Stress, Physiological , Whole Genome Sequencing
3.
Cellulose (Lond) ; 25(6): 3255-3266, 2018.
Article in English | MEDLINE | ID: mdl-31007420

ABSTRACT

Natural materials are a focus for development of low carbon products for a variety of applications. To utilise these materials, processing is required to meet acceptable industry standards. Laminated bamboo is a commercial product that is currently being explored for structural applications, however there is a gap in knowledge about the effects of commercial processing on the chemical composition. The present study utilised interdisciplinary methods of analysis to investigate the effects of processing on the composition of bamboo. Two common commercial processing methods were investigated: bleaching (chemical treatment) and caramelisation (hygrothermal treatment). The study indicated that the bleaching process results in a more pronounced degradation of the lignin in comparison to the caramelised bamboo. This augments previous research, which has shown that the processing method (strip size) and treatment may affect the mechanical properties of the material in the form of overall strength, failure modes and crack propagation. The study provides additional understanding of the effects of processing on the properties of bamboo.

4.
Int J Biol Macromol ; : 133429, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944074

ABSTRACT

Lytic polysaccharide monooxygenase (LPMO)-catalyzed oxidative processes play a major role in natural biomass conversion. Despite their oxidative cleavage at the surface of polysaccharides, understanding of their mode of action, and the impact of structural patterns of the cellulose fiber on LPMO activity is still not fully understood. In this work, we investigated the action of two different LPMOs from Podospora anserina on celluloses showing different structural patterns. For this purpose, we prepared cellulose II and cellulose III allomorphs from cellulose I cotton linters, as well as amorphous cellulose. LPMO action was monitored in terms of surface morphology, molar mass changes and monosaccharide profile. Both PaLPMO9E and PaLPMO9H were active on the different cellulose allomorphs (I, II and III), and on amorphous cellulose (PASC) whereas they displayed a different behavior, with a higher molar mass decrease observed for cellulose I. Overall, the pretreatment with LPMO enzymes clearly increased the accessibility of all types of cellulose, which was quantified by the higher carboxylate content after carboxymethylation reaction on LPMO-pretreated celluloses. This work gives more insight into the action of LPMOs as a tool for deconstructing lignocellulosic biomass to obtain new bio-based building blocks.

5.
Polymers (Basel) ; 15(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37447440

ABSTRACT

This study aims at better understanding the damage and fracture kinetics in flax fibre elements at both the unitary and bundle scales, using an experimental setup allowing optical observation at high recording rate in the course of tensile loading. Defects and issues from flax unitary fibre extraction are quantitated using polarized light microscopy. Tensile loading is conducted according to a particular setup, adapted to fibres of 10 to 20 µm in diameter and 10 mm in length. Optical recording using a high-speed camera is performed during loading up to the failure at acquisition, with speed ranging from 108,000 to 270,000 frames per second. Crack initiation in polymer layers of fibre elements, propagation as well as damage mechanisms are captured. The results show different failure scenarios depending on the fibre element's nature. In particular, fractured fibres underline either a fully transverse failure propagation or a combination of transverse and longitudinal cracking with different balances. Image recordings with high time resolution of down to 3.7 µs suggest an unstable system and transverse crack speed higher than 4 m/s and a slower propagation for longitudinal crack deviation. Failure propagation monitoring and fracture mechanism studies in individual natural fibre or bundles, using tensile load with optical observation, showed contrasted behaviour and the importance of the structural scale exanimated. This study can help in tailoring the eco-design of flax-based composites, in terms of toughness and mechanical performances, for both replacement of synthetic fibre materials and innovative composites with advanced properties.

6.
Polymers (Basel) ; 15(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850104

ABSTRACT

This study focuses on the use of tomato (Solanum lycopersicum L.) by-product biomass from industrial plants as reinforcement for designing a range of new degradable and biobased thermoplastic materials. As a novel technique, this fully circular approach enables a promising up-cycling of tomato wastes. After an in-depth morphological study of the degree of reinforcement through SEM and dynamic analysis, mechanical characterization was carried out. Our mechanical results demonstrate that this circular approach is of interest for composite applications. Despite their moderate aspect ratio values (between 1.5 and 2), the tomato by-product-reinforced materials can mechanically compete with existing formulations; PBS-Tomato fiber, for example, exhibits mechanical performance very close to that of PP-flax, especially regarding strength (+11%) and elongation at break (+6%). According to the matrix and particle morphology, a large range of products-biobased and/or degradable, depending on the targeted application-can be designed from tomato cultivation by-products.

7.
Carbohydr Polym ; 321: 121253, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739490

ABSTRACT

Plant fibres are increasingly used as reinforcements, especially in thermoplastic composites. Understanding the impact of temperature on the properties of these fibres is an important issue for the manufacturing of high-performance materials with minimal defects. In this work, the structural evolution and mechanical behaviour of flax fibre cell walls were dynamically monitored by temperature-controlled X-ray diffraction and nanoindentation from 25 to 230 °C; detailed biochemical analysis was also conducted on fibre samples after each heating step. With increasing temperature up to 230 °C, a decrease in the local mechanical performance of the flax cell walls, of about -72 % for the indentation modulus and -35 % for the hardness, was measured. This was associated with a decrease in the packing of the cellulose crystal lattice (increase in d-spacing d200), as well as significant mass losses measured by thermogravimetric analysis and changes in the biochemical composition, i.e. non-cellulosic polysaccharides attributed to the middle lamellae but also to the cell walls. This work, which proposes for the first time an in-situ investigation of the dynamic temperature evolution of the flax cell wall properties, highlights the reversible behaviour of their crystalline structure (i.e. cellulose) and local mechanical properties after cooling to room temperature, even after exposure to high temperatures.


Subject(s)
Flax , Hot Temperature , Bandages , Cell Wall , Cellulose
8.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Article in English | MEDLINE | ID: mdl-37666966

ABSTRACT

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Subject(s)
Lignin , Wood , Biomass , Cellulose
9.
Carbohydr Polym ; 291: 119584, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698341

ABSTRACT

Flax fibres have been used by humans for approximately 10,000 years. With time, the geographic area of production and cultivation has changed, as have the applications of flax fibres; from clothing to sails and paintings from antiquity, to automotive, fashion, and design applications in the contemporary era. The degradation process of flax fibres is the same for both ancient and modern objects made from this polysaccharidic material. This review, focusing on the cultural heritage field, after a brief description of flax plants and fibres, retraces the history of their use through Europe and the Near East, and discusses the evolution of extraction methods with human progress. Furthermore, the most important mechanisms of flax fibre degradation and the characterisation techniques currently in use are described. This study highlights the constructive interchange between engineering and cultural heritage that can be realised through a continuous comparison of antiquity and the contemporary era.


Subject(s)
Flax , Carbohydrates , Cellulose/chemistry , Flax/chemistry , Humans , Polysaccharides/metabolism , Textiles
10.
Bioinspir Biomim ; 17(3)2022 04 11.
Article in English | MEDLINE | ID: mdl-35081515

ABSTRACT

The field encompassing biomimetics, bioinspiration and nature inspiration in engineering science is growing steadily, pushed by exogenous factors like the search for potentially sustainable engineering solutions that might already exist in nature. With the help of information provided by a bibliometric database and further processed with a dynamic network and semantic analysis tool, we provide insight at two scales into the corpus of nature-inspired engineering field and its dynamics. At the macroscale, the Web of Science®(WoS) categories, countries and institutions are ranked and ordered by thematic clusters and country networks, highlighting the leading countries and institutions and how they focus on specific topics. Such an insight provides an overview at the macroscale that can be valuable to orient scientific strategy at the country level. At the mesoscale, where science is incarnated by collaborative networks of authors and institutions that run across countries, we identify six semantic clusters and subclusters within them, and their dynamics. We also pinpoint leading academic collaborative networks and their activity in relation to the six semantic clusters. Trends and prospective are also discussed. Typically, one observes that the field is becoming mature since, starting by imitating nature, it proceeded with mimicking more complex natural structures and functions and now it investigates ways used in nature in response to changes in the environment and implements them in innovative and adaptive artefacts. The sophistication of devices, methods and tools has been increasing over the years as well as their functionalities and adaptability, whereas the size of devices has decreased at the same time.


Subject(s)
Bibliometrics , Biomimetics , Biomimetics/methods , Engineering , Prospective Studies
11.
Polymers (Basel) ; 14(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015542

ABSTRACT

This study aims to improve the thermal stability and mechanical properties of carboxymethyl bacterial cellulose (CMBC) composite films. Experiments were conducted by preparing bacterial cellulose (BC) into CMBC, then parametrically mixing sodium alginate/starch/xanthan gum/gelatin and glycerin/sorbitol/PEG 400/PEG 6000 with CMBC to form the film. Scanning electron microscopy, X-ray diffractometry, infrared spectroscopy, mechanical tests, and thermogravimetric analysis showed that the composite films had better mechanical properties and thermal stability with the addition of 1.5% CMBC (% v/v), 1% sodium alginate, and 0.4% glycerin. Tensile strength was 38.13 MPa, the elongation at break was 13.4%, the kinematic viscosity of the film solution was 257.3 mm2/s, the opacity was 4.76 A/mm, the water vapor permeability was 11.85%, and the pyrolysis residue was 45%. The potential causes for the differences in the performance of the composite films were discussed and compared, leading to the conclusion that CMBC/Sodium alginate (SA)/glycerin (GL) had the best thermal stability and mechanical properties.

12.
Polymers (Basel) ; 14(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36015562

ABSTRACT

Bacterial cellulose (BC) is naturally degradable, highly biocompatible, hydrophilic, and essentially non-toxic, making it potentially useful as a base for creating more sophisticated bio-based materials. BC is similar to plant-derived cellulose in terms of chemical composition and structure but has a number of important differences in microstructure that could provide some unique opportunities for use as a scaffold for other functions. In this study, bacterial cellulose was alkylated and then esterified to produce a carboxymethyl bacterial cellulose (CMBC) that was then used to produce six different composite films with potential antibacterial properties. The films were assessed for antibacterial activity against Staphylococcus aureus and Escherichia coli, pyrolysis characteristics using thermogravimetric analysis (TGA), microstructure using scanning electron microscopy (SEM), and mechanical properties. The addition of nano-silver (nano-Ag) markedly improved the antimicrobial activity of the films while also enhancing the physical and mechanical properties. The results indicate that the three-dimensional reticulated structure of the bacterial cellulose provides an excellent substrate for scaffolding other bioactive materials. Thus, the nano-BC was added into the CMBC/nano-Ag composites furthermore, and then the antibacterial and mechanical properties were improved 44% for E. coli, 59% for S. aureus, and 20% for tensile strength, respectively.

13.
Carbohydr Polym ; 291: 119599, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698346

ABSTRACT

Fibre bundles are groups of elementary fibres glued together thanks to the middle lamella, and are the main fraction in plant fibre composites. In this study, relationship between the mechanical properties of flax fibre bundles, chemical composition and cellulose structure were investigated. To do so, a sequential biopolymer extraction was implemented. Fibre bundles were first depectinated by oxalate extraction, and then the hemicelluloses were extracted by LiCl/dimethyl sulfoxide (DMSO) and KOH. The oxalate extract consisted of homogalacturonans and type I rhamnogalacturonans, while the LiCl extract was composed mainly of glucomannans and the KOH extract of xyloglucans. The KOH stage resulted in the appearance of cellulose II in flax bundles. The extraction of pectin and hemicelluloses led to the disappearance of the middle lamella concomitant with a decrease in the tensile Young's modulus and maximum strength. Finally, the fibre bundle composition, ultrastructure and mechanical properties are discussed together in view of the thin middle lamella.


Subject(s)
Flax , Cell Wall/chemistry , Cellulose/chemistry , Oxalates , Polymers/metabolism
14.
Polymers (Basel) ; 13(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34300983

ABSTRACT

PLA-flax non-woven composites are promising materials, coupling high performance and possible degradation at their end of life. To explore their ageing mechanisms during garden composting, microstructural investigations were carried out through scanning electron microscopy (SEM) and atomic force microscopy (AFM). We observe that flax fibres preferentially degrade 'inwards' from the edge to the core of the composite. In addition, progressive erosion of the cell walls occurs within the fibres themselves, 'outwards' from the central lumen to the periphery primary wall. This preferential degradation is reflected in the decrease in indentation modulus from around 23 GPa for fibres located in the preserved core of the composite to 3-4 GPa for the remaining outer-most cell wall crowns located at the edge of the sample that is in contact with the compost. Ageing of the PLA matrix is less drastic with a relatively stable indentation modulus. Nevertheless, a change in the PLA morphology, a significant decrease in its roughness and increase of porosity, can be observed towards the edge of the sample, in comparison to the core. This work highlights the important role of intrinsic fibre porosity, called lumen, which is suspected to be a major variable of the compost ageing process, providing pathways of entry for moisture and microorganisms that are involved in cell wall degradation.

15.
Nat Plants ; 7(9): 1200-1206, 2021 09.
Article in English | MEDLINE | ID: mdl-34518667

ABSTRACT

Flax has a long and fascinating history. This plant was domesticated around 8,000 BCE1 in the Fertile Crescent area2, first for its seeds and then for its fibres1,3. Although its uses existed long before domestication, residues of flax yarn dated 30,000 years ago have been found in the Caucasus area4. However, Ancient Egypt laid the foundations for the cultivation of flax as a textile fibre crop5. Today flax fibres are used in high-value textiles and in natural actuators6 or reinforcements in composite materials7. Flax is therefore a bridge between ages and civilizations. For several decades, the development of non- or micro-destructive analysis techniques has led to numerous works on the conservation of ancient textiles. Non-destructive methods, such as optical microscopy8 or vibrational techniques9,10, have been largely used to investigate archaeological textiles, principally to evaluate their degradation mechanisms and state of conservation. Vibrational spectroscopy studies can now benefit from synchrotron radiation11 and X-ray diffraction measurement in the archaeometric study of historical textiles12,13. Conservation of mechanical performance and the ultrastructural differences between ancient and modern flax varieties have not been examined thus far. Here we examine the morphological, ultrastructural and mechanical characteristics of a yarn from an Egyptian mortuary linen dating from the early Middle Kingdom (Eleventh Dynasty, ca. 2033-1963 BCE) and compare them with a modern flax yarn to assess the quality and durability of ancient flax fibres and relate these to their processing methods. Advanced microscopy techniques, such as nano-tomography, multiphoton excitation microscopy and atomic force microscopy were used. Our findings reveal the cultural know-how of this ancient civilization in producing high-fineness fibres, as well as the exceptional durability of flax, which is sometimes questioned, demonstrating their potential as reinforcements in high-technology composites.


Subject(s)
Archaeology/history , Flax/chemistry , Flax/ultrastructure , Textiles/history , Egypt , History, Ancient , Microscopy, Electron, Scanning
16.
J Enzyme Inhib Med Chem ; 24(1): 38-46, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18608747

ABSTRACT

Recently, a novel wheat thaumatin-like protein, TLXI, which inhibits microbial glycoside hydrolase family (GH) 11 xylanases has been identified. It is the first xylanase inhibitor that exerts its inhibition in a non-competitive way. In the present study we gained insight into the interaction between TLXI and xylanases via combined molecular modeling and mutagenic approaches. More specifically, site-specific mutation of His22, situated on a loop which distinguishes TLXI from other, non-inhibiting, thaumatin-like proteins, and subsequent expression of the mutant in Pichia pastoris resulted in a protein lacking inhibition capacity. The mutant protein was unable to form a complex with GH11 xylanases. Based on these findings, the interaction of TLXI with GH11 xylanases is discussed.


Subject(s)
Endo-1,4-beta Xylanases/antagonists & inhibitors , Histidine , Plant Proteins/physiology , Cloning, Molecular , Glycoside Hydrolases/antagonists & inhibitors , Models, Molecular , Mutagenesis, Site-Directed , Plant Proteins/genetics , Protein Binding , Triticum
17.
Front Plant Sci ; 10: 194, 2019.
Article in English | MEDLINE | ID: mdl-30846997

ABSTRACT

This study combines experimental testing and computation analysis to reveal the role of defects and sub-micrometric microstructure in tensile behavior of hemp bast fibers. In particular, these structural defects represent the footprint of the processes to which the fibers elements are subject along the whole transformation chain from the plant to the end use product. Tensile experiments performed on elementary fibers and bundles in a wide diameter range (40-200 µm) are simultaneously conducted with X-ray micro-tomography observation. 3D images of ultra-fine resolution (voxel size of 280 nm) are achieved at different deformation magnitudes up to the complete failure thanks to the use of synchrotron radiation (ESRF, Grenoble, France). A Finite element (FE) model is implemented based on the conversion of the tomograms into 3D meshes. High performance computing is used to simulate the tensile response of the hemp bast fibers. In particular, the effects of notching and sub-micrometric structure of the fibers are explored. Results show the presence of different types of diffuse damage kinetics, which are related to the variability in the fiber size, surface defects and the presence of the lumen space. The damage behavior is found to be sensitive to the type of stress criterion implemented in the FE computation. The predictive analysis demonstrates the relevance of using embedded microstructure simulations to reveal the extent of stress localization and predict the failure properties in bast fibers for innovative composite manufacturing for instance.

18.
Carbohydr Polym ; 206: 48-56, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30553348

ABSTRACT

Flax retting is a major bioprocess in the cultivation and extraction cycle of flax fibres. The aim of the present study is to improve the understanding of the evolution of fibre properties and ultrastructure caused by this process at the plant cell wall scale. Initially, investigations of the mechanical performances of the flax cell walls by Atomic Force Microscopy (AFM) in Peak Force mode revealed a significant increase (+33%) in the cell wall indentation modulus with retting time. Two complementary structural studies are presented here, namely using X-Ray Diffraction (XRD) and solid state Nuclear Magnetic Resonance (NMR). An estimation of the cellulose crystallinity index by XRD measurements, confirmed by NMR, shows an increase of 8% in crystallinity with retting mainly due to the disappearance of amorphous polymer. In addition, NMR investigations show a compaction of inaccessible cell wall polymers, combined with an increase in the relaxation times of the C4 carbon. This densification provides a structural explanation for the observed improvement in mechanical performance of the secondary wall of flax fibres during the field retting process.

19.
Biochem J ; 403(3): 583-91, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17269932

ABSTRACT

Wheat (Triticum aestivum) contains a previously unknown type of xylanase (EC 3.2.1.8) inhibitor, which is described in the present paper for the first time. Based on its >60% similarity to TLPs (thaumatin-like proteins) and the fact that it contains the Prosite PS00316 thaumatin family signature, it is referred to as TLXI (thaumatin-like xylanase inhibitor). TLXI is a basic (pI> or =9.3 in isoelectric focusing) protein with a molecular mass of approx. 18-kDa (determined by SDS/PAGE) and it occurs in wheat with varying extents of glycosylation. The TLXI gene sequence encodes a 26-amino-acid signal sequence followed by a 151-amino-acid mature protein with a calculated molecular mass of 15.6-kDa and pI of 8.38. The mature TLXI protein was expressed successfully in Pichia pastoris, resulting in a 21-kDa (determined by SDS/PAGE) recombinant protein (rTLXI). Polyclonal antibodies raised against TLXI purified from wheat react with epitopes of rTLXI as well as with those of thaumatin, demonstrating high structural similarity between these three proteins. TLXI has a unique inhibition specificity. It is a non-competitive inhibitor of a number of glycoside hydrolase family 11 xylanases, but it is inactive towards glycoside hydrolase family 10 xylanases. Progress curves show that TLXI is a slow tight-binding inhibitor, with a K(i) of approx. 60-nM. Except for zeamatin, an alpha-amylase/trypsin inhibitor from maize (Zea mays), no other enzyme inhibitor is currently known among the TLPs. TLXI thus represents a novel type of inhibitor within this group of proteins.


Subject(s)
Endo-1,4-beta Xylanases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Triticum/chemistry , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/isolation & purification , Glycosylation , Kinetics , Mass Spectrometry , Mesylates/chemistry , Molecular Sequence Data , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Plant Proteins/chemistry , Time Factors , Xylans/metabolism
20.
J Agric Food Chem ; 55(19): 7682-8, 2007 Sep 19.
Article in English | MEDLINE | ID: mdl-17715986

ABSTRACT

To quantify Triticum aestivum xylanase inhibitor (TAXI) and xylanase inhibiting protein (XIP) type proteins in cereals in general and wheat ( T. aestivum) in particular, a robust enzyme-linked immunosorbent assay (ELISA) using an uncommon enzyme-antibody sandwich format was developed. Bacillus subtilis glycoside hydrolase family (GH) 11 and Aspergillus oryzae GH 10 xylanases were selected for coating ELISA plate wells to capture TAXI and XIP, respectively, prior to probing with antibodies. The detection threshold of the developed ELISA was much lower than that of the currently used xylanase inhibitor assay and the recently described Western blot approach. Because of its broad dynamic range (TAXI, 30-600 ng/mL, and XIP, 3-60 ng/mL), one proper standard extract dilution can be used for analyzing different wheat varieties, whereas for the currently used colorimetric assay, often different dilutions need to be analyzed. The TAXI ELISA for wheat was successfully adapted for barley ( Hordeum vulgare) and could also be used for other cereals.


Subject(s)
Endo-1,4-beta Xylanases/antagonists & inhibitors , Enzyme Inhibitors/analysis , Enzyme-Linked Immunosorbent Assay/methods , Plant Proteins/analysis , Triticum/chemistry , Carrier Proteins/analysis , Edible Grain/chemistry , Intracellular Signaling Peptides and Proteins
SELECTION OF CITATIONS
SEARCH DETAIL