Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Eur J Immunol ; 48(2): 258-272, 2018 02.
Article in English | MEDLINE | ID: mdl-28975614

ABSTRACT

The repertoire of human αß T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8+ T cell response to the highly effective YF-17D vaccine. We discover that these A2/LLW-specific CD8+ T cells are highly biased for the TCR α chain TRAV12-2. This bias is already present in A2/LLW-specific naïve T cells before vaccination with YF-17D. Using CD8+ T cell clones, we show that TRAV12-2 does not confer a functional advantage on a per cell basis. Molecular modeling indicated that the germline-encoded complementarity determining region (CDR) 1α loop of TRAV12-2 critically contributes to A2/LLW binding, in contrast to the conventional dominant dependence on somatically rearranged CDR3 loops. This germline component of antigen recognition may explain the unusually high precursor frequency, prevalence and immunodominance of T-cell responses specific for the A2/LLW epitope.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Complementarity Determining Regions/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Viral Vaccines/immunology , Yellow Fever/immunology , Yellow fever virus/physiology , Adaptive Immunity/genetics , Cell Line , Clonal Selection, Antigen-Mediated , Clone Cells , Cytotoxicity, Immunologic , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Humans , Immunodominant Epitopes/metabolism , Lymphocyte Activation , T-Cell Antigen Receptor Specificity , Viral Proteins/metabolism , Yellow Fever/genetics
2.
J Biol Chem ; 292(3): 802-813, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27903649

ABSTRACT

T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8+ T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection.


Subject(s)
CD8-Positive T-Lymphocytes , Peptides , Receptors, Antigen, T-Cell , Telomerase , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Cross Reactions , Humans , Peptides/chemistry , Peptides/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Telomerase/chemistry , Telomerase/immunology
3.
Article in English | MEDLINE | ID: mdl-29463534

ABSTRACT

Pseudomonas aeruginosa plays a major role in many chronic infections. Its ability to readily form biofilms contributes to its success as an opportunistic pathogen and its resistance/tolerance to antimicrobial/antibiotic therapy. A low-molecular-weight alginate oligomer (OligoG CF-5/20) derived from marine algae has previously been shown to impair motility in P. aeruginosa biofilms and disrupt pseudomonal biofilm assembly. As these bacterial phenotypes are regulated by quorum sensing (QS), we hypothesized that OligoG CF-5/20 may induce alterations in QS signaling in P. aeruginosa QS regulation was studied by using Chromobacterium violaceum CV026 biosensor assays that showed a significant reduction in acyl homoserine lactone (AHL) production following OligoG CF-5/20 treatment (≥2%; P < 0.05). This effect was confirmed by liquid chromatography-mass spectrometry analysis of C4-AHL and 3-oxo-C12-AHL production (≥2%; P < 0.05). Moreover, quantitative PCR showed that reduced expression of both the las and rhl systems was induced following 24 h of treatment with OligoG CF-5/20 (≥0.2%; P < 0.05). Circular dichroism spectroscopy indicated that these alterations were not due to steric interaction between the AHL and OligoG CF-5/20. Confocal laser scanning microscopy (CLSM) and COMSTAT image analysis demonstrated that OligoG CF-5/20-treated biofilms had a dose-dependent decrease in biomass that was associated with inhibition of extracellular DNA synthesis (≥0.5%; P < 0.05). These changes correlated with alterations in the extracellular production of the pseudomonal virulence factors pyocyanin, rhamnolipids, elastase, and total protease (P < 0.05). The ability of OligoG CF-5/20 to modify QS signaling in P. aeruginosa PAO1 may influence critical downstream functions such as virulence factor production and biofilm formation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Pseudomonas aeruginosa/metabolism
4.
Biochem J ; 474(6): 1003-1016, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28270562

ABSTRACT

Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the in vivo Ca2+ oscillation-inducing activity and the in vitro biochemical properties of human PLCζ. Microinjection of cRNA or recombinant protein corresponding to PLCζI489F mutant at physiological concentrations completely failed to cause Ca2+ oscillations and trigger development. However, this infertile phenotype could be effectively rescued by microinjection of relatively high (non-physiological) amounts of recombinant mutant PLCζI489F protein, leading to Ca2+ oscillations and egg activation. Our in vitro biochemical analysis suggested that the PLCζI489F mutant displayed similar enzymatic properties, but dramatically reduced binding to PI(3)P and PI(5)P-containing liposomes compared with wild-type PLCζ. Our findings highlight the importance of PLCζ at fertilisation and the vital role of the C2 domain in PLCζ function, possibly due to its novel binding characteristics.


Subject(s)
C2 Domains , Calcium/metabolism , Infertility, Male/genetics , Phosphoinositide Phospholipase C/chemistry , Point Mutation , Amino Acid Substitution , Animals , Calcium Signaling , Cattle , Female , Fertilization , Gene Expression , Humans , Isoleucine/chemistry , Isoleucine/metabolism , Liposomes/chemistry , Liposomes/metabolism , Male , Mice , Microinjections , Oocytes/cytology , Oocytes/metabolism , Phenylalanine/chemistry , Phenylalanine/metabolism , Phosphatidylinositol Phosphates/chemistry , Phosphatidylinositol Phosphates/metabolism , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Protein Binding , RNA, Complementary/administration & dosage , RNA, Complementary/genetics , RNA, Complementary/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spermatozoa/metabolism , Spermatozoa/pathology
5.
Article in English | MEDLINE | ID: mdl-28630204

ABSTRACT

In chronic respiratory disease, the formation of dense, 3-dimensional "microcolonies" by Pseudomonas aeruginosa within the airway plays an important role in contributing to resistance to treatment. An in vitro biofilm model of pseudomonal microcolony formation using artificial-sputum (AS) medium was established to study the effects of low-molecular-weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation, and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates (n = 3) and reference nonmucoid and mucoid multidrug-resistant (MDR) CF isolates (n = 7). Bacterial growth and biofilm development and disruption were studied using cell viability assays and image analysis with scanning electron and confocal laser scanning microscopy. Pseudomonal growth in AS medium was associated with increased ATP production (P < 0.05) and the formation (at 48 h) of discrete (>10-µm) microcolonies. In conventional growth medium, colistin retained an ability to inhibit growth of planktonic bacteria, although the MIC was increased (0.1 to 0.4 µg/ml) in AS medium compared to Mueller-Hinton (MH) medium. In contrast, in an established-biofilm model in AS medium, the efficacy of colistin was decreased. OligoG CF-5/20 (≥2%) treatment, however, induced dose-dependent biofilm disruption (P < 0.05) and led to colistin retaining its antimicrobial activity (P < 0.05). While circular dichroism indicated that OligoG CF-5/20 did not change the orientation of the alginate carboxyl groups, mass spectrometry demonstrated that the oligomers induced dose-dependent (>0.2%; P < 0.05) reductions in pseudomonal quorum-sensing signaling. These findings reinforce the potential clinical significance of microcolony formation in the CF lung and highlight a novel approach to treat MDR pseudomonal infections.


Subject(s)
Alginates/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Colistin/pharmacology , Oligosaccharides/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Respiratory Tract Infections/drug therapy , Biofilms/drug effects , Cystic Fibrosis/microbiology , Drug Resistance, Multiple, Bacterial , Drug Synergism , Glucuronic Acid/pharmacology , Hexuronic Acids/pharmacology , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development , Quorum Sensing/drug effects , Respiratory Tract Infections/microbiology , Sputum/microbiology
6.
J Biol Chem ; 290(31): 18924-33, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26085090

ABSTRACT

The non-obese diabetic mouse model of type 1 diabetes continues to be an important tool for delineating the role of T-cell-mediated destruction of pancreatic ß-cells. However, little is known about the molecular mechanisms that enable this disease pathway. We show that insulin reactivity by a CD8(+) T-cell clone, known to induce type 1 diabetes, is characterized by weak T-cell antigen receptor binding to a relatively unstable peptide-MHC. The structure of the native 9- and 10-mer insulin epitopes demonstrated that peptide residues 7 and 8 form a prominent solvent-exposed bulge that could potentially be the main focus of T-cell receptor binding. The C terminus of the peptide governed peptide-MHC stability. Unexpectedly, we further demonstrate a novel mode of flexible peptide presentation in which the MHC peptide-binding groove is able to "open the back door" to accommodate extra C-terminal peptide residues.


Subject(s)
Histocompatibility Antigens Class I/chemistry , Insulin/chemistry , Peptide Fragments/chemistry , Amino Acid Sequence , Animals , Antigen Presentation , Binding Sites , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Crystallography, X-Ray , Diabetes Mellitus, Type 1/metabolism , Histocompatibility Antigens Class I/metabolism , Insulin/immunology , Insulin/pharmacology , Mice, Inbred NOD , Models, Molecular , Peptide Fragments/immunology , Peptide Fragments/pharmacology , Protein Binding , Protein Interaction Domains and Motifs
7.
Biochim Biophys Acta ; 1850(11): 2168-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26164367

ABSTRACT

Calmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF). Herein, we describe how two CPVT- (N54I & N98S) and three LQTS-associated (D96V, D130G & F142L) CaM mutations result in alteration of their biochemical and biophysical properties. Ca(2+)-binding studies indicate that the CPVT-associated CaM mutations, N54I & N98S, exhibit the same or a 3-fold reduced Ca(2+)-binding affinity, respectively, versus wild-type CaM, whereas the LQTS-associated CaM mutants, D96V, D130G & F142L, display more profoundly reduced Ca(2+)-binding affinity. In contrast, all five CaM mutations confer a disparate RyR2 interaction and modulation of [(3)H]ryanodine binding to RyR2, regardless of CPVT or LQTS association. Our findings suggest that the clinical presentation of CPVT or LQTS associated with these five CaM mutations may involve both altered intrinsic Ca(2+)-binding as well as defective interaction with RyR2.


Subject(s)
Calmodulin/genetics , Long QT Syndrome/etiology , Mutation , Ryanodine Receptor Calcium Release Channel/physiology , Tachycardia, Ventricular/etiology , Animals , Calcium/metabolism , Swine
8.
Antimicrob Agents Chemother ; 60(4): 1984-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26824944

ABSTRACT

We have previously examined the mechanism of antimicrobial peptides on the outer membrane of vaccinia virus. We show here that the formulation of peptides LL37 and magainin-2B amide in polysorbate 20 (Tween 20) results in greater reductions in virus titer than formulation without detergent, and the effect is replicated by substitution of polysorbate 20 with high-ionic-strength buffer. In contrast, formulation with polysorbate 20 or high-ionic-strength buffer has the opposite effect on bactericidal activity of both peptides, resulting in lesser reductions in titer for both Gram-positive and Gram-negative bacteria. Circular dichroism spectroscopy shows that the differential action of polysorbate 20 and salt on the virucidal and bactericidal activities correlates with the α-helical content of peptide secondary structure in solution, suggesting that the virucidal and bactericidal activities are mediated through distinct mechanisms. The correlation of a defined structural feature with differential activity against a host-derived viral membrane and the membranes of both Gram-positive and Gram-negative bacteria suggests that the overall helical content in solution under physiological conditions is an important feature for consideration in the design and development of candidate peptide-based antimicrobial compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/pharmacology , Cathelicidins/pharmacology , Escherichia coli/drug effects , Polysorbates/pharmacology , Staphylococcus aureus/drug effects , Vaccinia virus/drug effects , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/chemistry , Cathelicidins/chemistry , Cell Line , Cell Membrane/chemistry , Cell Membrane/drug effects , Drug Synergism , Epithelial Cells/drug effects , Epithelial Cells/virology , Escherichia coli/growth & development , Humans , Microbial Sensitivity Tests , Osmolar Concentration , Polysorbates/chemistry , Protein Conformation, alpha-Helical/drug effects , Rabbits , Species Specificity , Staphylococcus aureus/growth & development , Structure-Activity Relationship , Vaccinia virus/growth & development , Virion/drug effects , Virion/growth & development
9.
Retrovirology ; 12: 20, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25808313

ABSTRACT

BACKGROUND: Presentation of identical HIV-1 peptides by closely related Human Leukocyte Antigen class I (HLAI) molecules can select distinct patterns of escape mutation that have a significant impact on viral fitness and disease progression. The molecular mechanisms by which HLAI micropolymorphisms can induce differential HIV-1 escape patterns within identical peptide epitopes remain unknown. RESULTS: Here, we undertook genetic and structural analyses of two immunodominant HIV-1 peptides, Gag180-188 (TPQDLNTML, TL9-p24) and Nef71-79 (RPQVPLRPM, RM9-Nef) that are among the most highly targeted epitopes in the global HIV-1 epidemic. We show that single polymorphisms between different alleles of the HLA-B7 superfamily can induce a conformational switch in peptide conformation that is associated with differential HLAI-specific escape mutation and immune control. A dominant R71K mutation in the Nef71-79 occurred in those with HLA-B*07:02 but not B*42:01/02 or B*81:01. No structural difference in the HLA-epitope complexes was detected to explain this observation. CONCLUSIONS: These data suggest that identical peptides presented through very similar HLAI landscapes are recognized as distinct epitopes and provide a novel structural mechanism for previously observed differential HIV-1 escape and disease progression.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV Antigens/immunology , HIV Infections/immunology , HIV-1/immunology , Histocompatibility Antigens Class I/metabolism , Immune Evasion , Adult , Epitopes, T-Lymphocyte/genetics , HIV Antigens/genetics , HIV Infections/virology , HIV-1/genetics , Histocompatibility Antigens Class I/genetics , Humans
10.
Biochim Biophys Acta ; 1830(10): 4426-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23747301

ABSTRACT

BACKGROUND: This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). METHODS: Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. RESULTS: The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400µM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. CONCLUSIONS: The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. GENERAL SIGNIFICANCE: Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.


Subject(s)
Adenosine Triphosphate/metabolism , Mutation , Myocardium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Circular Dichroism , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Spectrophotometry, Ultraviolet , Tacrolimus Binding Proteins/metabolism
11.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2897-912, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25372681

ABSTRACT

Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1-606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410-437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545-606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C(α) atom movements of up to 8 Šupon channel gating, and predicts the location of the leucine-isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.


Subject(s)
Arrhythmias, Cardiac/genetics , Mutation , Ryanodine Receptor Calcium Release Channel/chemistry , Amino Acid Sequence , Animals , Arrhythmias, Cardiac/metabolism , Binding Sites , Chlorides/metabolism , Crystallography, X-Ray , Humans , Mice , Molecular Docking Simulation , Molecular Sequence Data , Protein Conformation , Protein Structure, Tertiary , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sequence Alignment
12.
J Biol Chem ; 287(15): 12204-16, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22351752

ABSTRACT

Keratinocyte migration during epidermal repair depends on interactions between cellular heparan sulfate proteoglycan receptors, syndecan-1 and -4, and the C-terminal globular domains (LG45) of the extracellular matrix protein laminin 332. This study investigates the molecular basis of the binding specificity of the syndecan-1 and -4 receptors expressed by human keratinocytes. We used site-directed mutagenesis to alter a recombinant LG45 protein by substituting the most critical basic residues with glutamine. All proteins were expressed in mammalian cells, purified, and characterized biochemically. We used in vitro binding assays, including surface plasmon resonance, to examine interactions between mutated LG45 and heparan sulfates, syndecan-1 and -4. We identify a major heparin binding domain on the outer edge of a ß-strand of LG45 surrounded by a track of converging low affinity residues. This domain harbors distinctive syndecan-1 and -4 binding-specific sequences. This is the first study to demonstrate a binding specificity of two proteoglycans produced by a single cell type. In addition, we found that although syndecan-1 interacts exclusively through its glycosaminoglycan chains, syndecan-4 binding relies on both its core protein and its heparan sulfate chains. These results suggest that LG45 may trigger different signals toward keratinocytes depending on its interaction with syndecan-1 or -4.


Subject(s)
Laminin/metabolism , Syndecan-1/metabolism , Syndecan-4/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Cell Adhesion , Cell Line , Cell Movement , Chromatography, Affinity , Heparin/chemistry , Heparitin Sulfate/chemistry , Humans , Immobilized Proteins/chemistry , Keratinocytes/physiology , Laminin/chemistry , Laminin/genetics , Laminin/isolation & purification , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Surface Plasmon Resonance
13.
Amino Acids ; 44(1): 161-77, 2013 Jan.
Article in English | MEDLINE | ID: mdl-21984379

ABSTRACT

Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second ß-barrel domain in man and a variant with truncated ß-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca(2+) and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca(2+) and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons.


Subject(s)
Central Nervous System/embryology , Central Nervous System/physiology , Neurons/physiology , Transglutaminases/genetics , Animals , Catalytic Domain , Cell Differentiation , Cell Line , Central Nervous System/cytology , Coenzymes , Evolution, Molecular , Gene Expression , Gene Expression Regulation, Developmental , Humans , Kinetics , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Neurons/enzymology , Nucleotides/chemistry , Organ Specificity , Protein Binding , Protein Structure, Secondary , Substrate Specificity , Transglutaminases/antagonists & inhibitors , Transglutaminases/metabolism
14.
Antimicrob Agents Chemother ; 56(6): 3298-308, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22430978

ABSTRACT

Antimicrobial peptides (AMPs) have therapeutic potential, particularly for localized infections such as those of the lung. Here we show that airway administration of a pegylated AMP minimizes lung tissue toxicity while nevertheless maintaining antimicrobial activity. CaLL, a potent synthetic AMP (KWKLFKKIFKRIVQRIKDFLR) comprising fragments of LL-37 and cecropin A peptides, was N-terminally pegylated (PEG-CaLL). PEG-CaLL derivatives retained significant antimicrobial activity (50% inhibitory concentrations [IC(50)s] 2- to 3-fold higher than those of CaLL) against bacterial lung pathogens even in the presence of lung lining fluid. Circular dichroism and fluorescence spectroscopy confirmed that conformational changes associated with the binding of CaLL to model microbial membranes were not disrupted by pegylation. Pegylation of CaLL reduced AMP-elicited cell toxicity as measured using in vitro lung epithelial primary cell cultures. Further, in a fully intact ex vivo isolated perfused rat lung (IPRL) model, airway-administered PEG-CaLL did not result in disruption of the pulmonary epithelial barrier, whereas CaLL caused an immediate loss of membrane integrity leading to pulmonary edema. All AMPs (CaLL, PEG-CaLL, LL-37, cecropin A) delivered to the lung by airway administration showed limited (<3%) pulmonary absorption in the IPRL with extensive AMP accumulation in lung tissue itself, a characteristic anticipated to be beneficial for the treatment of pulmonary infections. We conclude that pegylation may present a means of improving the lung biocompatibility of AMPs designed for the treatment of pulmonary infections.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Lung/drug effects , Lung/metabolism , Peptides/chemistry , Peptides/pharmacology , Polyethylene Glycols/chemistry , Animals , Anti-Infective Agents/chemical synthesis , Cell Line , Chromatography, High Pressure Liquid , Circular Dichroism , Enzyme-Linked Immunosorbent Assay , Male , Mass Spectrometry , Microbial Sensitivity Tests , Peptides/chemical synthesis , Rats , Rats, Sprague-Dawley , Spectrometry, Fluorescence
15.
Biomacromolecules ; 12(1): 19-27, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21141810

ABSTRACT

Polymer therapeutics, including polymeric drugs and polymer-protein conjugates, are clinically established as first-generation nanomedicines. Knowing that the coiled-coil peptide motif is fundamentally important in the regulation of many cellular and pathological processes, the aim of these studies was to examine the feasibility of designing polymer conjugates containing the coiled-coil motif as a putative therapeutic "molecular switch". To establish proof of concept, we prepared a mPEG-FosW(C) conjugate by reacting mPEG-maleimide (M(w) 5522 g mol(-1), M(w)/M(n) 1.1) with a FosW peptide synthesized to contain a terminal cysteine residue (FosW(C)). Its ability to form a stable coil-coil heterodimer with the target c-Jun sequence of the oncogenic AP-1 transcription factor was investigated using 2D (15)N-HSQC NMR together with a recombinantly prepared (15)N-labeled c-Jun peptide ([(15)N]r-c-Jun). Observation that heterodimerization was achieved and that the polymer did not sterically disadvantage hybridization suggests an important future for this new family of polymer therapeutics.


Subject(s)
Nanomedicine/methods , Polyethylene Glycols , Proto-Oncogene Proteins c-fos , Proto-Oncogene Proteins c-jun , Cell Line, Tumor , Humans , Nuclear Magnetic Resonance, Biomolecular , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Protein Structure, Secondary , Proto-Oncogene Proteins c-fos/chemistry , Proto-Oncogene Proteins c-fos/pharmacology , Proto-Oncogene Proteins c-jun/chemistry , Proto-Oncogene Proteins c-jun/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology
16.
Protein Expr Purif ; 71(1): 33-41, 2010 May.
Article in English | MEDLINE | ID: mdl-20045464

ABSTRACT

We report the domain analysis of the N-terminal region (residues 1-759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR2(1-606)xHis(6), RyR2(391-606)xHis(6), RyR2(409-606)xHis(6), Trx.RyR2(384-606)xHis(6), TrxxRyR2(391-606)xHis(6) and Trx.RyR2(409-606)xHis(6). The folding of RyR2(1-606)xHis(6) was analyzed by circular dichroism spectroscopy resulting in alpha-helix and beta-sheet content of approximately 23% and approximately 29%, respectively, at temperatures up to 35 degrees C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR2(1-606)xHis(6), resulted in the appearance of two specific subfragments of approximately 40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His(6).Tag antibody indicated that RyR2(1-606)xHis(6) is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively.


Subject(s)
Computational Biology/methods , Recombinant Proteins/biosynthesis , Ryanodine Receptor Calcium Release Channel/chemistry , Amino Acid Sequence , Circular Dichroism , Histidine/metabolism , Humans , Molecular Sequence Data , Oligopeptides/metabolism , Peptide Fragments/chemistry , Protein Processing, Post-Translational , Protein Structure, Tertiary , Sequence Analysis, Protein , Solubility
17.
Mol Immunol ; 125: 43-50, 2020 09.
Article in English | MEDLINE | ID: mdl-32645549

ABSTRACT

The CD8 T cell response to the HLA-A2-restricted epitope LLWNGPMAV (LLW) of the non-structural protein 4b of Yellow Fever Virus (YFV) is remarkably immunodominant, highly prevalent and powerful in YFV-vaccinated humans. Here we used a combinatorial peptide library screening in the context of an A2/LLW-specific CD8 T cell clone to identify a superagonist that features a methionine to isoleucine substitution at position 7. Based on in silico modeling, the functional enhancement of this LLW-7I mutation was associated with alterations in the structural dynamics of the peptide in the major histocompatibility complex (pMHC) binding with the T cell receptor (TCR). While the TCR off-rate of LLW-7I pMHC is comparable to the wild type peptide, the rigidity of the 7I peptide seems to confer less entropy loss upon TCR binding. This LLW-7I superagonist is an example of improved functionality in human CD8 T cells associated with optimized ligand rigidity for TCR binding and not with changes in TCR:pMHC off-rate kinetics.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , Viral Nonstructural Proteins/immunology , Yellow fever virus/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , Humans , Immunodominant Epitopes/chemistry , Models, Molecular , Mutation , Peptide Library , Protein Binding/immunology , Receptors, Antigen, T-Cell/chemistry
18.
Article in English | MEDLINE | ID: mdl-31293981

ABSTRACT

The M3 protein (M3) encoded by murine gammaherpesvirus 68 (MHV-68) is a unique viral immunomodulator with a high-affinity for a broad spectrum of chemokines, key mediators responsible for the migration of immune cells to sites of inflammation. M3 is currently being studied as a very attractive and desirable tool for blocking the chemokine signaling involved in some inflammatory diseases and cancers. In this study, we elucidated the role of M3 residues E70 and T272 in binding to chemokines by examining the effects of the E70A and T272G mutations on the ability of recombinant M3, prepared in Escherichia coli cells, to bind the human chemokines CCL5 and CXCL8. We found that the E70A mutation enhanced binding of M3 to CCL5 two-fold but had little effect on its binding to CXCL8. In contrast, the T272G mutation was found to be important for the thermal stability of M3 and significantly decreased M3's binding to both CCL5 (by about 4×) and CXCL8 (by about 5×). We also constructed in silico models of the wild-type M3-CCL5 and M3-CCL8 complexes and found substantial differences in their physical and chemical properties. M3 models with single mutation E70A and T272G suggested the role of E70 and T272 in binding M3 protein to chemokines. In sum, we have confirmed that site-directed mutagenesis could be an effective tool for modulating the blockade of particular chemokines by M3, as desired in therapeutic treatments for severe inflammatory illnesses arising from chemokine network dysregulation.


Subject(s)
Chemokines/metabolism , Mutation , Protein Binding , Rhadinovirus/genetics , Viral Proteins/genetics , Viral Proteins/immunology , Amino Acid Sequence , Animals , Cell Line , Chemokine CCL5/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Humans , Immunologic Factors/genetics , Immunologic Factors/immunology , Interleukin-8 , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Viral Proteins/chemistry
19.
Ann N Y Acad Sci ; 1448(1): 19-29, 2019 07.
Article in English | MEDLINE | ID: mdl-30937913

ABSTRACT

Calmodulin (CaM) is a universal calcium (Ca2+ )-binding messenger that regulates many vital cellular events. In cardiac muscle, CaM associates with ryanodine receptor 2 (RyR2) and regulates excitation-contraction coupling. Mutations in human genes CALM1, CALM2, and CALM3 have been associated with life-threatening heart disorders, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia. A novel de novo LQTS-associated missense CaM mutation (E105A) was recently identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest. Herein, we report the first molecular characterization of the CaM E105A mutation. Expression of the CaM E105A mutant in zebrafish embryos resulted in cardiac arrhythmia and increased heart rate, suggestive of ventricular tachycardia. In vitro biophysical and biochemical analysis revealed that E105A confers a deleterious effect on protein stability and a reduced Ca2+ -binding affinity due to loss of cooperativity. Finally, the CaM E105A mutation resulted in reduced CaM-RyR2 interaction and defective modulation of ryanodine binding. Our findings suggest that the CaM E105A mutation dysregulates normal cardiac function by a complex mechanism involving alterations in both CaM-Ca2+ and CaM-RyR2 interactions.


Subject(s)
Arrhythmias, Cardiac/genetics , Calmodulin/genetics , Calmodulin/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/genetics , Animals , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Calcium Signaling/physiology , Child , Excitation Contraction Coupling/physiology , Heart Rate/genetics , Heart Rate/physiology , Humans , Male , Myocytes, Cardiac/metabolism , Tachycardia, Ventricular/physiopathology , Zebrafish
20.
Bio Protoc ; 7(13)2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28748203

ABSTRACT

T cell receptor (TCR) recognition of foreign peptide fragments, presented by peptide major histocompatibility complex (pMHC), governs T-cell mediated protection against pathogens and cancer. Many factors govern T-cell sensitivity, including the affinity of the TCR-pMHC interaction and the stability of pMHC on the surface of antigen presenting cells. These factors are particularly relevant for the peptide vaccination field, in which more stable pMHC interactions could enable more effective protection against disease. Here, we discuss a method for the determination of pMHC stability that we have used to investigate HIV immune escape, T-cell sensitivity to cancer antigens and mechanisms leading to autoimmunity.

SELECTION OF CITATIONS
SEARCH DETAIL