Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Publication year range
1.
Cell ; 140(5): 652-65, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211135

ABSTRACT

MicroRNAs and heterogeneous ribonucleoproteins (hnRNPs) are posttranscriptional gene regulators that bind mRNA in a sequence-specific manner. Here, we report that loss of miR-328 occurs in blast crisis chronic myelogenous leukemia (CML-BC) in a BCR/ABL dose- and kinase-dependent manner through the MAPK-hnRNP E2 pathway. Restoration of miR-328 expression rescues differentiation and impairs survival of leukemic blasts by simultaneously interacting with the translational regulator poly(rC)-binding protein hnRNP E2 and with the mRNA encoding the survival factor PIM1, respectively. The interaction with hnRNP E2 is independent of the microRNA's seed sequence and it leads to release of CEBPA mRNA from hnRNP E2-mediated translational inhibition. Altogether, these data reveal the dual ability of a microRNA to control cell fate both through base pairing with mRNA targets and through a decoy activity that interferes with the function of regulatory proteins.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/metabolism , Animals , Blast Crisis , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Proto-Oncogene Proteins c-pim-1/metabolism , RNA-Induced Silencing Complex/metabolism
2.
Ann Hematol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967662

ABSTRACT

Development of Janus-kinase (JAK) inhibitors has revolutionized the therapeutic landscape for patients with myeloproliferative neoplasia (MPN). Following approval of the first JAK1/2-inhibitor Ruxolitinib, symptoms of this inflammatory disease, characterized by splenomegaly, release of inflammatory cytokines and appearance of thrombosis, could be effectively reduced for the first time. However, JAK-inhibitor treatment is limited in several aspects: 1) duration of response: 3 years after initiation of therapy more than 50% of patients have discontinued JAK-inhibitor treatment due to lack of efficacy or resistance; 2) reduction of disease burden: while effective in reducing inflammation and constitutional symptoms, JAK-inhibitors fail to reduce the malignant clone in the majority of patients and therefore lack long-term efficacy. Early clinical trials for patients with myelofibrosis (MF) have tried to address these issues for patients with suboptimal response to Ruxolitinib therapy while combination therapies with Fedratinib are rare. Recent reports provided first evidence on how the JAK2-V617F mutated myeloid cells may influence T-cell responses. JAK2-V617F promoted the synthesis of PD-L1 in MPN cells leading to limited anti-neoplastic T-cell responses, metabolic changes in T-cells and eventually JAK2-V617F-driven immune-escape of MPN cells. These findings may facilitate the use of immunotherapeutic approaches for JAK-mutated clones. Immune checkpoints refer to a variety of inhibitory pathways that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. The FRACTION study is a single arm, open label Phase II trial investigating the combination of Fedratinib with the PD-1 inhibitor Nivolumab in patients with myelofibrosis and suboptimal or lack of response to JAK-inhibitor therapy. Over a 12 months period the trial assesses longer term outcomes, particularly the effects on clinical outcomes, such as induction of clinical remissions, quality of life and improvement of anemia. No prospective clinical trial data exist for combinations of JAK- and immune-checkpoint-inhibitors in the planned MF study population and this study will provide new findings that may contribute to advancing the treatment landscape for MF patients with suboptimal responses and limited alternatives.

3.
Urol Int ; : 1-9, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626735

ABSTRACT

INTRODUCTION: Personalized medicine poses great opportunities and challenges. While the therapeutic landscape markedly expands, descriptions about status, clinical implementation and real-world benefits of precision oncology and molecular tumor boards (MTB) remain sparse, particularly in the field of genitourinary (GU) cancer. Hence, this study characterized urological MTB cases to better understand the potential role of MTB in uro-oncology. METHODS: We analyzed patients with complete data sets being reviewed at an MTB from January 2019 to October 2022, focusing on results of molecular analysis and treatment recommendations. RESULTS: We evaluated 102 patients with GU cancer with a mean patient age of 61.7 years. Prostate cancer (PCa) was the most frequent entity with 52.9% (54/102), followed by bladder cancer (18.6%, 19/102) and renal cell carcinoma (14.7%, 15/102). On average, case presentation at MTB took place 54.9 months after initial diagnosis and after 2.7 previous lines of therapy. During the study period, 49.0% (50/102) of patients deceased. Additional MTB-based treatment recommendations were achieved in a majority of 68.6% (70/102) of patients, with a recommendation for targeted therapy in 64.3% (45/70) of these patients. Only 6.7% (3/45) of patients - due to different reasons - received the recommended MTB-based therapy though, with 33% (1/3) of patients reaching disease control. Throughout the MTB study period, GU cancer case presentations and treatment recommendations increased, while the time interval between initial presentation and final therapy recommendation were decreasing over time. CONCLUSION: Presentation of uro-oncological patients at the MTB is a highly valuable measure for clinical decision-making. Prospectively, earlier presentation of patients at the MTB and changing legislative issues regarding comprehensive molecular testing and targeted treatment approval might further improve patients' benefits from comprehensive molecular diagnostics.

4.
Stroke ; 54(4): 938-946, 2023 04.
Article in English | MEDLINE | ID: mdl-36789775

ABSTRACT

BACKGROUND: Undetermined stroke etiology hampers optimal secondary prevention in a large proportion of young patients. We explored whether genetic screening for clonal hematopoiesis of indetermined potential (CHIP), a novel risk factor for stroke, could identify patients with myeloid precursor lesions or covert myeloid neoplasm requiring specific treatment. METHODS: We performed targeted sequencing on 56 genes recurrently mutated in hematologic neoplasms in a prospective cohort of patients with acute brain ischemia between 18 and 60 years. CHIP prevalence was compared with age-matched healthy controls from the Nijmegen Biomedical Study (n=1604) and the UK Biobank (n=101 678). Patients with suspicion of high-risk CHIP or myeloid neoplasm were invited for further hematologic evaluation. RESULTS: We included 248 consecutive patients (39% women) of whom 176 (71%) had cryptogenic stroke etiology. Fifty-one (21%) patients had CHIP, 3-fold more than in the general population (7.7% versus 2.6% for the Nijmegen Biomedical Study and 11.9% versus 4.1% for UK Biobank; P<0.001 for both). Patients with CHIP were older (median [interquartile range], 53 [50-59] versus 51 [41-56] years; P<0.001), had higher carotid intima-media thickness (0.68 [0.58-0.80] versus 0.59 [0.51-0.73] mm; P=0.009), and had higher burden of atherosclerosis (29.4% versus 16.7%; P=0.04). We invited 11 patients (4.4%) for further hematologic assessment, which in 7 led to the diagnosis of high-risk CHIP and in 2 to the new diagnosis of a myeloproliferative neoplasm with indication for cytoreductive therapy. CONCLUSIONS: Using genetic screening for myeloid disorders in patients with stroke of predominantly undetermined etiology, we found a 3-fold higher CHIP prevalence than in the general population. We identified high-risk CHIP and previously covert myeloproliferative neoplasms as potential stroke etiologies in 4.4% and 1% of patients, respectively. Our findings demonstrate the diagnostic and therapeutic yield of genetic screening in young patients with stroke. Future studies should investigate the role of CHIP for stroke recurrence and optimal secondary prevention.


Subject(s)
Hematologic Neoplasms , Stroke , Humans , Female , Male , Clonal Hematopoiesis , Prevalence , Prospective Studies , Carotid Intima-Media Thickness , Hematopoiesis/genetics , Mutation , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Stroke/epidemiology , Stroke/genetics
5.
Blood ; 131(18): 2065-2073, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29519804

ABSTRACT

The transcription factor "nuclear factor erythroid 2" (NFE2) is overexpressed in the majority of patients with myeloproliferative neoplasms (MPNs). In murine models, elevated NFE2 levels cause an MPN phenotype with spontaneous leukemic transformation. However, both the molecular mechanisms leading to NFE2 overexpression and its downstream targets remain incompletely understood. Here, we show that the histone demethylase JMJD1C constitutes a novel NFE2 target gene. JMJD1C levels are significantly elevated in polycythemia vera (PV) and primary myelofibrosis patients; concomitantly, global H3K9me1 and H3K9me2 levels are significantly decreased. JMJD1C binding to the NFE2 promoter is increased in PV patients, decreasing both H3K9me2 levels and binding of the repressive heterochromatin protein-1α (HP1α). Hence, JMJD1C and NFE2 participate in a novel autoregulatory loop. Depleting JMJD1C expression significantly reduced cytokine-independent growth of an MPN cell line. Independently, NFE2 is regulated through the epigenetic JAK2 pathway by phosphorylation of H3Y41. This likewise inhibits HP1α binding. Treatment with decitabine lowered H3Y41ph and augmented H3K9me2 levels at the NFE2 locus in HEL cells, thereby increasing HP1α binding, which normalized NFE2 expression selectively in JAK2V617F-positive cell lines.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Gene Expression , Myeloproliferative Disorders/genetics , NF-E2 Transcription Factor, p45 Subunit/genetics , Biomarkers , Chromobox Protein Homolog 5 , Cytokines/metabolism , DNA Methylation , Decitabine/pharmacology , Histones/metabolism , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Models, Biological , Mutation , Myeloproliferative Disorders/metabolism , NF-E2 Transcription Factor, p45 Subunit/metabolism , Oxidoreductases, N-Demethylating/genetics , Phosphorylation , Polycythemia Vera/genetics , Promoter Regions, Genetic , Protein Binding
6.
Ann Hematol ; 99(7): 1551-1560, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32504186

ABSTRACT

TP53 aberrations reportedly predict favorable responses to decitabine (DAC) in acute myeloid leukemia (AML). We evaluated clinical features and outcomes associated with chromosome 17p loss or TP53 gene mutations in older, unfit DAC-treated AML patients in a phase II trial. Of 178 patients, 25 had loss of 17p in metaphase cytogenetics; 24 of these had a complex (CK+) and 21 a monosomal karyotype (MK+). In analyses in all patients and restricted to CK+ and MK+ patients, 17p loss tended to associate with higher rates of complete remission (CR), partial remission (PR), or antileukemic effect (ALE). Despite favorable response rates, there was no significant OS difference between patients with or without loss of 17p in the entire cohort or in the CK+ and MK+ cohort. TP53 mutations were identified in eight of 45 patients with material available. Five of the eight TP53-mutated patients had 17p loss. TP53-mutated patients had similar rates of CR/PR/ALE but shorter OS than those with TP53 wild type (P = 0.036). Moreover, patients with a subclone based on mutation data had shorter OS than those without (P = 0.05); only one patient with TP53-mutated AML had a subclone. In conclusion, 17p loss conferred a favorable impact on response rates, even among CK+ and MK+ patients that however could not be maintained. The effect of TP53 mutations appeared to be different; however, patient numbers were low. Future research needs to further dissect the impact of the various TP53 aberrations in HMA-based combination therapies. The limited duration of favorable responses to HMA treatment in adverse-risk genetics AML should prompt physicians to advance allografting for eligible patients in a timely fashion.


Subject(s)
Chromosome Deletion , Decitabine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Monosomy , Smith-Magenis Syndrome , Tumor Suppressor Protein p53/genetics , Aged , Aged, 80 and over , Chromosomes, Human, Pair 17/genetics , Clonal Evolution/drug effects , Clonal Evolution/genetics , DNA Mutational Analysis , Female , Germany/epidemiology , Humans , Karyotype , Karyotyping , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Monosomy/diagnosis , Monosomy/genetics , Mutation , Smith-Magenis Syndrome/diagnosis , Smith-Magenis Syndrome/epidemiology , Smith-Magenis Syndrome/genetics , Survival Analysis
7.
Haematologica ; 104(1): 59-69, 2019 01.
Article in English | MEDLINE | ID: mdl-30171030

ABSTRACT

Hematologic responses to hypomethylating agents are often delayed in patients with myelodysplastic syndrome or acute myeloid leukemia. Fetal hemoglobin is a potential novel bio-marker of response: recently, we demonstrated that a high fetal hemoglobin level prior to decitabine treatment was associated with superior outcome. Here we investigated whether early fetal hemoglobin induction during decitabine treatment also had prognostic value, and studied the potential of decitabine to induce erythroid differentiation and fetal hemoglobin expression in vitro Fetal hemoglobin levels were measured by high-performance liquid chromatography in patients with higher-risk myelodysplastic syndrome (n=16) and acute myeloid leukemia (n=37) before treatment and after each course of decitabine. Levels above 1.0% were considered induced. Patients achieving complete or partial remission as best response had attained a median fetal hemoglobin of 1.9% after two courses of treatment, whereas the median value in patients who did not reach complete or partial remission was 0.8% (P=0.015). Fetal hemoglobin induction after two courses of decitabine treatment was associated with early platelet doubling (P=0.006), and its subsequent decrease with hematologic relapse. In patients with myelodysplastic syndrome, induction of fetal hemoglobin after course 2 of treatment was associated with longer overall survival: median of 22.9 versus 7.3 months in patients with or without induction of fetal hemoglobin, respectively [hazard ratio=0.2 (95% confidence interval: 0.1-0.9); P=0.03]. In vitro decitabine treatment of two bi-potential myeloid leukemia cell lines (K562 and HEL) resulted in induction of an erythroid (not megakaryocytic) differentiation program, and of fetal hemoglobin mRNA and protein, associated with GATA1 gene demethylation and upregulation. In conclusion, fetal hemoglobin may provide a useful dynamic biomarker during hypomethylating agent therapy in patients with myelodysplastic syndrome or acute myeloid leukemia.


Subject(s)
Biomarkers, Tumor/blood , Decitabine/administration & dosage , Fetal Hemoglobin/metabolism , Myelodysplastic Syndromes , Neoplasm Proteins/blood , Aged , Female , Humans , K562 Cells , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/drug therapy , Male , Middle Aged , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/drug therapy
8.
Ann Bot ; 124(6): 891-901, 2019 11 27.
Article in English | MEDLINE | ID: mdl-30452536

ABSTRACT

BACKGROUND AND AIMS: In oilseed rape (Brassica napus) semi-dwarf hybrid varieties from crosses between bzh dwarf and normal-type lines are of increasing interest. They have improved nitrogen (N) uptake, N-utilization and N-use efficiency compared to normal types. This study aimed to elucidate whether these N-related effects can be explained by the bzh shoot growth-type alone or also by differences in root traits. METHODS: Root system size was measured using root electrical capacitance (EC) in field trials with two N levels in two sets of genotypes segregating for the bzh-locus: (1) 108 doubled haploid (DH) test hybrids in two seasons, 2010-2012, and (2) 16 near-isogenic hybrids in the 2016-17 season. Quantitative trait loci (QTL) for root EC were estimated in DH test hybrids. Seedling root architecture parameters were monitored in vitro. KEY RESULTS: In vitro root growth showed a higher root: shoot ratio in bzh semi-dwarf hybrids. Root EC in field trials was higher at high N supply than at zero N fertilization. In most trials semi-dwarf hybrids had higher EC than normal-type hybrids, but they reduced root EC in response to N limitation more than normal types. Root EC was more heritable at the end of flowering (h2 = 0.73) than at the beginning of flowering (h2 = 0.36) in near-isogenic hybrids and had a lower heritability in trials of DH test hybrids (h2 = 0.27). A QTL for root EC in the genomic region of the bzh-locus on linkage group A06 was significant at zero N fertilization. CONCLUSIONS: Root EC proved to be a meaningful method in oilseed rape breeding programmes targeting root system size. The greater reduction of semi-dwarf root EC compared to the normal type under low N supply with simultaneous increase in N efficiency implies that in roots it is not a question of 'the more the merrier' and that the bzh root system reacts highly economically when N is scarce.


Subject(s)
Brassica napus , Genotype , Nitrogen , Phenotype , Quantitative Trait Loci
9.
Br J Haematol ; 182(6): 830-842, 2018 09.
Article in English | MEDLINE | ID: mdl-29974943

ABSTRACT

Knowledge of the molecular and clonal characteristics in the myelodysplastic syndromes (MDS) and during progression to acute myeloid leukaemia (AML) is essential to understand the disease dynamics and optimize treatment. Sequencing serial bone marrow samples of eight patients, we observed that MDS featured a median of 3 mutations. Mutations in genes involved in RNA-splicing or epigenetic regulation were most frequent, and exclusively present in the major clone. Minor subclones were distinguishable in three patients. As the MDS progressed, a median of one mutation was gained, leading to clonal outgrowth. No AML developed genetically independent of a pre-existing clone. The gained mutation mostly affected genes encoding signalling proteins. Additional acquisition of genomic aberrations frequently occurred. Upon treatment, emergence of new clones could be observed. As confirmed by single-cell sequencing, multiple mutations in identical genes in different clones were present within individual patients. DNA-methylation profiling in patients without identification of novel mutations in AML revealed methylation changes in individual genes. In conclusion, our data complement previous observations on the mutational and clonal characteristics in MDS and at progression. Moreover, DNA-methylation changes may be associated with progression in single patients. Redundancy of mutated genes in different clones suggests fertile grounds promoting clonal selection or acquisition.


Subject(s)
Clone Cells/pathology , Disease Progression , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Adult , DNA Methylation , Female , Humans , Leukemia, Myeloid, Acute/etiology , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/therapy , Single-Cell Analysis
10.
Br J Haematol ; 183(2): 235-241, 2018 10.
Article in English | MEDLINE | ID: mdl-30378121

ABSTRACT

This open-label, multicentre phase I/II study determined the maximum tolerated dose (MTD), safety and efficacy of clofarabine administered with cytarabine and idarubicin in newly diagnosed acute myeloid leukaemia (AML) patients lacking favourable genetic aberrations. The MTD was 30 mg/m2 clofarabine for patients below and above 60 years. The most frequently reported grade 3-4 non-haematological adverse events were infectious and gastrointestinal toxicities. Complete remission (CR)/CR with incomplete recovery rate was 67%. Allogeneic haematopoietic cell transplantation in first remission was feasible in a high proportion of younger AML patients and probably contributed to the favourable outcome compared to historical controls.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Clofarabine/administration & dosage , Clofarabine/adverse effects , Cytarabine/administration & dosage , Cytarabine/adverse effects , Dose-Response Relationship, Drug , Female , Hematopoietic Stem Cell Transplantation , Humans , Idarubicin/administration & dosage , Idarubicin/adverse effects , Induction Chemotherapy/methods , Male , Maximum Tolerated Dose , Middle Aged , Remission Induction
12.
BMC Genet ; 19(1): 10, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29357832

ABSTRACT

BACKGROUND: Lolium perenne L. is the most important forage grass species in temperate regions. It is also considered as a sustainable source of biomass for energy production. However, improvement in biomass yield has been limited by comparison with other major crops. More efficient utilisation of genetic resources and improved breeding schemes are required to advance L. perenne breeding. In an attempt to elucidate the extent of genetic diversity in L. perenne, 1384 DArT, 182 SNP and 48 SSR markers were applied to 297 accessions (Set I) contributed by three German breeding companies and the IPK Genebank. Due to the heterogeneous nature of Lolium accessions, bulk samples were used. Apart from germplasm set I, additional set II and set III was used to determine the reproducibility of marker system and judge the feasibility of bulk strategy in this study. RESULTS: By assessing different bulk sizes, 24 individuals per sample were shown to be a representative number of plants to discriminate different accessions. Among the 297 accessions, all marker types revealed a high polymorphism rate; 1.99, 2.00 and 8.19 alleles, were obtained per locus on average using DArTs, SNPs and SSRs, respectively. The Jaccard distance for DArT markers ranged from 0.00 to 0.73, the Modified Roger's distance (MRD) for SNP markers ranged from 0.03 to 0.52, and for SSR markers from 0.26 to 0.76. Gene diversity for dominant DArT and co-dominant SNP and SSR markers was found to be 0.26, 0.32 and 0.45, respectively. DArT markers showed the highest consistency and reproducibility. CONCLUSION: The resulting data were evaluated using a number of different classification methods, but none of the methods showed a clear differentiation into distinct genetic pools. With regard to hybrid breeding, this will possibly impede substantial progress towards increased biomass yields of L. perenne by utilising heterosis.


Subject(s)
Genetic Variation , Lolium/genetics , Breeding , Hybrid Vigor , Lolium/classification , Lolium/physiology , Microsatellite Repeats , Polymorphism, Single Nucleotide
13.
Ann Hematol ; 97(10): 1785-1795, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29926156

ABSTRACT

The presence of cytogenetic clonal heterogeneity has been associated with poor prognosis in patients with acute myeloid leukemia (AML). Here, we reassessed this association. The study cohort consisted of all patients with an abnormal karyotype randomized in the EORTC/GIMEMA AML-10 and AML-12 trials. Abnormal karyotypes were classified as no subclones present (cytogenetic abnormality in a single clone), defined subclones present (presence of one to three subclones), and composite karyotypes (CP) (clonal heterogeneity not allowing enumeration of individual subclones). The main endpoints were overall survival (OS) and disease-free survival (DFS). Among 1291 patients with an abnormal karyotype, 1026 had no subclones, 226 at least 1 subclone, and 39 a CP. Patients with defined subclones had an OS similar to those with no subclones (hazard ratio (HR) 1.05, 95% confidence interval (CI) 0.88-1.26), but CP patients had a shorter OS (HR = 1.58, 95% CI 1.11-2.26). However, in a multivariate Cox model stratified by protocol and adjusted for age, cytogenetic risk group, secondary versus primary AML, and performance status, clonal heterogeneity lost its prognostic importance (HR = 1.10, 95% CI 0.91-1.32 for defined subclones versus no subclones; HR = 0.96, 95% CI 0.67-1.38 for CP versus no subclones). Also, the impact of having a donor on DFS was similar in the three clonal subgroups. In summary, in patients with cytogenetic abnormality, presence of subclones had no impact on OS. The dismal outcome in patients with a CP was explained by the known predictors of poor prognosis. TRIAL REGISTRATION: AML-10: ClinicalTrials.gov identifier: NCT00002549, retrospectively registered July 19, 2004; AML12: ClinicalTrials.gov identifier: NCT00004128, registered January 27, 2003.


Subject(s)
Chromosome Aberrations , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Abnormal Karyotype , Adolescent , Adult , Clonal Evolution/genetics , Cytogenetic Analysis , Female , Genetic Heterogeneity , Humans , Male , Middle Aged , Prognosis , Randomized Controlled Trials as Topic , Retrospective Studies , Survival Analysis , Young Adult
14.
Recent Results Cancer Res ; 212: 119-132, 2018.
Article in English | MEDLINE | ID: mdl-30069628

ABSTRACT

Ruxolitinib, formerly known as INCB018424 or INC424, is a potent and selective oral inhibitor of Janus kinase (JAK) 1 and JAK2. Ruxolitinib has been approved for the treatment of myelofibrosis (MF) by the US Food and Drug Administration (FDA) in 2011 and by the European Medicines Agency (EMA) in 2012, followed by the approval for the treatment of hydroxyurea (HU)-resistant or -intolerant polycythemia vera (PV) in 2014. Both MF and PV are myeloproliferative neoplasms (MPNs) which are characterized by the aberrant activation of the JAK-STAT pathway. Clinically, MF features bone marrow fibrosis, splenomegaly, abnormal blood counts, and poor quality-of-life through associated symptoms. PV is characterized by the overproduction of primarily red blood cells (RBC), risk of thrombotic complications, and development of secondary MF. Ruxolitinib treatment results in a meaningful reduction in spleen size and symptom burden in the majority of MF patients and may also have a favorable effect on survival. In PV, ruxolitinib effectively controls the hematocrit and reduces splenomegaly. Since recently, ruxolitinib is also under investigation for the treatment of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Toxicities of ruxolitinib include myelosuppression, which results in dose-limiting thrombocytopenia and anemia, and viral reactivations. The metabolization of ruxolitinib through CYP3A4 needs to be considered particularly if co-administered with potent CYP3A4 inhibitors. Several further JAK inhibitors are currently under investigation for MPNs or other immuno-inflammatory diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Polycythemia Vera/drug therapy , Primary Myelofibrosis/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Nitriles , Pyrimidines , Spleen
15.
Br J Haematol ; 176(4): 609-617, 2017 02.
Article in English | MEDLINE | ID: mdl-27905102

ABSTRACT

Although azanucleoside DNA-hypomethylating agents (HMAs) are routinely used for the treatment of myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), very few outcome predictors have been established. Expression of the ß-like globin gene locus is tightly regulated by DNA methylation, is HMA-sensitive in vitro, and fetal haemoglobin (HbF) expression is under study as a potential biomarker for response of MDS patients to azacitidine. We determined HbF expression in 16 MDS and 36 AML patients receiving decitabine (DAC). Pre-treatment HbF was already elevated (>1·0% of total haemoglobin) in 7/16 and 12/36 patients, and HbF was induced by DAC in 81%/54% of MDS/AML patients, respectively. Elevated pre-treatment HbF was associated with longer median overall survival (OS): 26·6 vs. 8·6 months for MDS (hazard ratio [HR] 8·56, 95% confidence interval [CI] 1·74-42·49, P = 0·008, with similarly longer progression-free and AML-free survival), and 10·0 vs. 2·9 months OS for AML (HR 3·01, 95% CI 1·26-7·22, P = 0·014). In a multivariate analysis, the prognostic value of HbF was retained. Time-dependent Cox models revealed that the prognostic value of treatment-induced HbF induction was inferior to that of pre-treatment HbF. In conclusion, we provide first evidence for in vivo HbF induction by DAC in MDS/AML, and demonstrate prognostic value of elevated pre-treatment HbF, warranting prospective, randomized studies.


Subject(s)
Azacitidine/analogs & derivatives , Fetal Hemoglobin/analysis , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/administration & dosage , Azacitidine/pharmacology , Azacitidine/therapeutic use , Biomarkers/analysis , DNA Methylation/drug effects , Decitabine , Disease-Free Survival , Female , Fetal Hemoglobin/drug effects , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Myelodysplastic Syndromes/mortality , Prognosis , Survival Analysis
16.
Blood ; 125(3): 499-503, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25343957

ABSTRACT

Despite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.3%), we identified somatic missense mutations in the ETNK1 gene. Targeted resequencing on 515 hematological clonal disorders revealed the presence of ETNK1 variants in 6 (8.8%) of 68 aCML and 2 (2.6%) of 77 chronic myelomonocytic leukemia samples. These mutations clustered in a small region of the kinase domain, encoding for H243Y and N244S (1/8 H243Y; 7/8 N244S). They were all heterozygous and present in the dominant clone. The intracellular phosphoethanolamine/phosphocholine ratio was, on average, 5.2-fold lower in ETNK1-mutated samples (P < .05). Similar results were obtained using myeloid TF1 cells transduced with ETNK1 wild type, ETNK1-N244S, and ETNK1-H243Y, where the intracellular phosphoethanolamine/phosphocholine ratio was significantly lower in ETNK1-N244S (0.76 ± 0.07) and ETNK1-H243Y (0.37 ± 0.02) than in ETNK1-WT (1.37 ± 0.32; P = .01 and P = .0008, respectively), suggesting that ETNK1 mutations may inhibit the catalytic activity of the enzyme. In summary, our study shows for the first time the evidence of recurrent somatic ETNK1 mutations in the context of myeloproliferative/myelodysplastic disorders.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Mutation/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Amino Acid Sequence , Case-Control Studies , Follow-Up Studies , Humans , Molecular Sequence Data , Prognosis , Sequence Homology, Amino Acid
17.
Blood ; 123(12): 1883-6, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24493670

ABSTRACT

We describe the development of acute myeloid leukemia (AML) in an adult with CBL syndrome caused by a heterozygous de novo germline mutation in CBL codon D390. In the AML bone marrow, the mutated CBL allele was homozygous after copy number-neutral loss-of-heterozygosity and amplified through a chromosomal gain; moreover, an inv(16)(p13q22) and, as assessed by whole-exome sequencing, 12 gene mutations (eg, in CAND1, NID2, PTPRT, DOCK6) were additionally acquired. During complete remission of the AML, in the presence of normal blood counts, the hematopoiesis stably maintained the homozygous CBL mutation, which is reminiscent of the situation in children with CBL syndrome and transient juvenile myelomonocytic leukemia. No additional mutations were identified by whole-exome sequencing in granulocytes during complete remission. The study highlights the development of AML in an adult with CBL syndrome and, more generally, in genetically aberrant but clinically inconspicuous hematopoiesis.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Proto-Oncogene Proteins c-cbl/genetics , Adult , Chromosome Aberrations , Chromosomes, Human, Pair 11/genetics , Gene Amplification , Germ-Line Mutation , Hematologic Diseases/complications , Hematologic Diseases/genetics , Hematopoiesis/genetics , Homozygote , Humans , Leukemia, Myeloid, Acute/etiology , Loss of Heterozygosity , Male , Spherocytosis, Hereditary/complications , Spherocytosis, Hereditary/genetics , Syndrome
18.
Ann Hematol ; 95(2): 191-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26596971

ABSTRACT

In a study of elderly AML patients treated with the hypomethylating agent decitabine (DAC), we noted a surprisingly favorable outcome in the (usually very unfavorable) subgroup with two or more autosomal monosomies (MK2+) within a complex karyotype (Lübbert et al., Haematologica 97:393-401, 2012). We now analyzed 206 myelodysplastic syndrome (MDS) patients (88 % of 233 patients randomized in the EORTC/GMDSSG phase III trial 06011, 61 of them with RAEBt, i.e. AML by WHO) with cytogenetics informative for MK status.. Endpoints are the following: complete/partial (CR/PR) and overall response rate (ORR) and progression-free (PFS) and overall survival (OS). Cytogenetic subgroups are the following: 63 cytogenetically normal (CN) patients, 143 with cytogenetic abnormalities, 73 of them MK-negative (MK-), and 70 MK-positive (MK+). These MK+ patients could be divided into 17 with a single autosomal monosomy (MK1) and 53 with at least two monosomies (MK2+). ORR with DAC in CN patients: 36.1 %, in MK- patients: 16.7 %, in MK+ patients: 43.6 % (MK1: 44.4 %, MK2+ 43.3 %). PFS was prolonged by DAC compared to best supportive care (BSC) in the CN (hazard ratio (HR) 0.55, 99 % confidence interval (CI), 0.26; 1.15, p = 0.03) and MK2+ (HR 0.50; 99 % CI, 0.23; 1.06, p = 0.016) but not in the MK-, MK+, and MK1 subgroups. OS was not improved by DAC in any subgroup. In conclusion, we demonstrate for the first time in a randomized phase III trial that high-risk MDS patients with complex karyotypes harboring two or more autosomal monosomies attain encouraging responses and have improved PFS with DAC treatment compared to BSC.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/analogs & derivatives , Disease Progression , Monosomy/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Aged , Aged, 80 and over , Azacitidine/therapeutic use , Decitabine , Disease-Free Survival , Female , Germany/epidemiology , Humans , Leukemia/diagnosis , Leukemia/drug therapy , Leukemia/genetics , Male , Middle Aged , Myelodysplastic Syndromes/diagnosis , Risk Factors
20.
Blood ; 121(1): 159-69, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23100311

ABSTRACT

Recently, we showed that increased miR-181a expression was associated with improved outcomes in cytogenetically normal acute myeloid leukemia (CN-AML). Interestingly, miR-181a expression was increased in CN-AML patients harboring CEBPA mutations, which are usually biallelic and associate with better prognosis. CEBPA encodes the C/EBPα transcription factor. We demonstrate here that the presence of N-terminal CEBPA mutations and miR-181a expression are linked. Indeed, the truncated C/EBPα-p30 isoform, which is produced from the N-terminal mutant CEBPA gene or from the differential translation of wild-type CEBPA mRNA and is commonly believed to have no transactivation activity, binds to the miR-181a-1 promoter and up-regulates the microRNA expression. Furthermore, we show that lenalidomide, a drug approved for myelodysplastic syndromes and multiple myeloma, enhances translation of the C/EBPα-p30 isoform, resulting in higher miR-181a levels. In xenograft mouse models, ectopic miR-181a expression inhibits tumor growth. Similarly, lenalidomide exhibits antitumorigenic activity paralleled by increased miR-181a expression. This regulatory pathway may explain an increased sensitivity to apoptosis-inducing chemotherapy in subsets of AML patients. Altogether, our data provide a potential explanation for the improved clinical outcomes observed in CEBPA-mutated CN-AML patients, and suggest that lenalidomide treatment enhancing the C/EBPα-p30 protein levels and in turn miR-181a may sensitize AML blasts to chemotherapy.


Subject(s)
CCAAT-Enhancer-Binding Proteins/physiology , Gene Expression Regulation, Leukemic/drug effects , Immunologic Factors/pharmacology , Leukemia, Myeloid, Acute/drug therapy , MicroRNAs/biosynthesis , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Thalidomide/analogs & derivatives , Adult , Animals , Antimetabolites, Antineoplastic/pharmacology , CCAAT-Enhancer-Binding Proteins/biosynthesis , CCAAT-Enhancer-Binding Proteins/genetics , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Line, Tumor/transplantation , Cytarabine/pharmacology , Frameshift Mutation , Humans , Immunologic Factors/therapeutic use , K562 Cells , Lenalidomide , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Neoplasm Proteins/genetics , Point Mutation , Promoter Regions, Genetic/genetics , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Structure, Tertiary , RNA, Neoplasm/genetics , Recombinant Fusion Proteins/physiology , Thalidomide/pharmacology , Thalidomide/therapeutic use , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL