Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Mol Cell Cardiol ; 156: 45-56, 2021 07.
Article in English | MEDLINE | ID: mdl-33773996

ABSTRACT

CRELD1 (Cysteine-Rich with EGF-Like Domains 1) is a risk gene for non-syndromic atrioventricular septal defects in human patients. In a mouse model, Creld1 has been shown to be essential for heart development, particularly in septum and valve formation. However, due to the embryonic lethality of global Creld1 knockout (KO) mice, its cell type-specific function during peri- and postnatal stages remains unknown. Here, we generated conditional Creld1 KO mice lacking Creld1 either in the endocardium (KOTie2) or the myocardium (KOMyHC). Using a combination of cardiac phenotyping, histology, immunohistochemistry, RNA-sequencing, and flow cytometry, we demonstrate that Creld1 function in the endocardium is dispensable for heart development. Lack of myocardial Creld1 causes extracellular matrix remodeling and trabeculation defects by modulation of the Notch1 signaling pathway. Hence, KOMyHC mice die early postnatally due to myocardial hypoplasia. Our results reveal that Creld1 not only controls the formation of septa and valves at an early stage during heart development, but also cardiac maturation and function at a later stage. These findings underline the central role of Creld1 in mammalian heart development and function.


Subject(s)
Cell Adhesion Molecules/genetics , Extracellular Matrix Proteins/genetics , Gene Expression Regulation, Developmental , Heart/embryology , Heart/physiology , Myocardium/metabolism , Organogenesis/genetics , Animals , Biomarkers , Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism , Flow Cytometry , Gene Expression Profiling , Humans , Mice, Knockout , Single-Cell Analysis
2.
Mol Cell Endocrinol ; 468: 111-120, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29146556

ABSTRACT

Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.


Subject(s)
Cyclic AMP/metabolism , Mammals/physiology , Optogenetics , Spermatozoa/physiology , Animals , Light , Male , Signal Transduction , Spermatozoa/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL