Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Mol Cell ; 53(2): 317-29, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24462205

ABSTRACT

The stability and activity of numerous signaling proteins in both normal and cancer cells depends on the dimeric molecular chaperone heat shock protein 90 (Hsp90). Hsp90's function is coupled to ATP binding and hydrolysis and requires a series of conformational changes that are regulated by cochaperones and numerous posttranslational modifications (PTMs). SUMOylation is one of the least-understood Hsp90 PTMs. Here, we show that asymmetric SUMOylation of a conserved lysine residue in the N domain of both yeast (K178) and human (K191) Hsp90 facilitates both recruitment of the adenosine triphosphatase (ATPase)-activating cochaperone Aha1 and, unexpectedly, the binding of Hsp90 inhibitors, suggesting that these drugs associate preferentially with Hsp90 proteins that are actively engaged in the chaperone cycle. Importantly, cellular transformation is accompanied by elevated steady-state N domain SUMOylation, and increased Hsp90 SUMOylation sensitizes yeast and mammalian cells to Hsp90 inhibitors, providing a mechanism to explain the sensitivity of cancer cells to these drugs.


Subject(s)
Adenosine Triphosphate/metabolism , Chaperonins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/physiology , Humans , Protein Structure, Tertiary , Sumoylation
2.
BMC Biol ; 18(1): 10, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31987035

ABSTRACT

BACKGROUND: The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. RESULTS: We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. CONCLUSIONS: Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity.


Subject(s)
HSP90 Heat-Shock Proteins/genetics , Homeostasis , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Oxidative Phosphorylation , Cell Line , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism
3.
Mol Cell ; 47(3): 434-43, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22727666

ABSTRACT

Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones.


Subject(s)
Cell Cycle Proteins/metabolism , Chaperonins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Tyrosine/metabolism , Animals , COS Cells , Cell Cycle Proteins/genetics , Chaperonins/genetics , Chlorocebus aethiops , Humans , Mice , Molecular Chaperones/genetics , NIH 3T3 Cells , Phosphorylation/physiology
4.
Mol Cell ; 41(6): 672-81, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21419342

ABSTRACT

Heat shock protein 90 (Hsp90) is an essential molecular chaperone whose activity is regulated not only by cochaperones but also by distinct posttranslational modifications. We report here that casein kinase 2 phosphorylates a conserved threonine residue (T22) in α helix-1 of the yeast Hsp90 N-domain both in vitro and in vivo. This α helix participates in a hydrophobic interaction with the catalytic loop in Hsp90's middle domain, helping to stabilize the chaperone's ATPase-competent state. Phosphomimetic mutation of this residue alters Hsp90 ATPase activity and chaperone function and impacts interaction with the cochaperones Aha1 and Cdc37. Overexpression of Aha1 stimulates the ATPase activity, restores cochaperone interactions, and compensates for the functional defects of these Hsp90 mutants.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Threonine/metabolism , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chaperonins/chemistry , Chaperonins/genetics , Chaperonins/metabolism , Fungal Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Humans , Molecular Chaperones/genetics , Phosphorylation , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
Mol Cell ; 37(3): 333-43, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20159553

ABSTRACT

Saccharomyces WEE1 (Swe1), the only "true" tyrosine kinase in budding yeast, is an Hsp90 client protein. Here we show that Swe1(Wee1) phosphorylates a conserved tyrosine residue (Y24 in yeast Hsp90 and Y38 in human Hsp90alpha) in the N domain of Hsp90. Phosphorylation is cell-cycle associated and modulates the ability of Hsp90 to chaperone a selected clientele, including v-Src and several other kinases. Nonphosphorylatable mutants have normal ATPase activity, support yeast viability, and productively chaperone the Hsp90 client glucocorticoid receptor. Deletion of SWE1 in yeast increases Hsp90 binding to its inhibitor geldanamycin, and pharmacologic inhibition/silencing of Wee1 sensitizes cancer cells to Hsp90 inhibitor-induced apoptosis. These findings demonstrate that Hsp90 chaperoning of distinct client proteins is differentially regulated by specific posttranslational modification of a unique subcellular pool of the chaperone, and they provide a strategy to increase the cellular potency of Hsp90 inhibitors.


Subject(s)
Cell Cycle Proteins/physiology , HSP90 Heat-Shock Proteins/metabolism , Protein-Tyrosine Kinases/physiology , Saccharomyces cerevisiae Proteins/physiology , Tyrosine/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Dimerization , HSP90 Heat-Shock Proteins/physiology , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , RNA Interference , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination
6.
Proc Natl Acad Sci U S A ; 110(17): E1604-12, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23564345

ABSTRACT

TRAP1 (TNF receptor-associated protein), a member of the HSP90 chaperone family, is found predominantly in mitochondria. TRAP1 is broadly considered to be an anticancer molecular target. However, current inhibitors cannot distinguish between HSP90 and TRAP1, making their utility as probes of TRAP1-specific function questionable. Some cancers express less TRAP1 than do their normal tissue counterparts, suggesting that TRAP1 function in mitochondria of normal and transformed cells is more complex than previously appreciated. We have used TRAP1-null cells and transient TRAP1 silencing/overexpression to show that TRAP1 regulates a metabolic switch between oxidative phosphorylation and aerobic glycolysis in immortalized mouse fibroblasts and in human tumor cells. TRAP1-deficiency promotes an increase in mitochondrial respiration and fatty acid oxidation, and in cellular accumulation of tricarboxylic acid cycle intermediates, ATP and reactive oxygen species. At the same time, glucose metabolism is suppressed. TRAP1-deficient cells also display strikingly enhanced invasiveness. TRAP1 interaction with and regulation of mitochondrial c-Src provide a mechanistic basis for these phenotypes. Taken together with the observation that TRAP1 expression is inversely correlated with tumor grade in several cancers, these data suggest that, in some settings, this mitochondrial molecular chaperone may act as a tumor suppressor.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Animals , COS Cells , CSK Tyrosine-Protein Kinase , Chlorocebus aethiops , Glycolysis , HSP90 Heat-Shock Proteins , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , NIH 3T3 Cells , Neoplasm Invasiveness/genetics , Oxidative Phosphorylation , RNA Interference , Transfection , src-Family Kinases/metabolism
7.
Chemistry ; 21(39): 13598-608, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26286886

ABSTRACT

Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP-regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP-competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2-phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Šfrom the active site. Specifically, analysis of protein responses to first-generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules' effects on Hsp90 enzymatic, conformational, co-chaperone and client-binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Benzofurans/chemistry , Chaperonins/chemistry , HSP90 Heat-Shock Proteins/chemistry , Adenosine Triphosphatases/metabolism , Allosteric Site , Biochemical Phenomena , Cell Line, Tumor , HSP90 Heat-Shock Proteins/metabolism , Humans , Hydrolysis , Ligands , Protein Binding , Protein Conformation
8.
J Chem Inf Model ; 55(3): 676-86, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25686391

ABSTRACT

The design of a single drug molecule that is able to simultaneously and specifically interact with multiple biological targets is gaining major consideration in drug discovery. However, the rational design of drugs with a desired polypharmacology profile is still a challenging task, especially when these targets are distantly related or unrelated. In this work, we present a computational approach aimed at the identification of suitable target combinations for multitarget drug design within an ensemble of biologically relevant proteins. The target selection relies on the analysis of activity annotations present in molecular databases and on ligand-based virtual screening. A few target combinations were also inspected with structure-based methods to demonstrate that the identified dual-activity compounds are able to bind target combinations characterized by remote binding site similarities. Our approach was applied to the heat shock protein 90 (Hsp90) interactome, which contains several targets of key importance in cancer. Promising target combinations were identified, providing a basis for the computational design of compounds with dual activity. The approach may be used on any ensemble of proteins of interest for which known inhibitors are available.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Polypharmacology , Binding Sites , Databases, Chemical , Estrogen Receptor alpha/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Ligands , Molecular Docking Simulation , Protein Interaction Maps , Receptor, ErbB-2/metabolism , Structure-Activity Relationship
9.
Nat Chem Biol ; 7(11): 818-26, 2011 Sep 25.
Article in English | MEDLINE | ID: mdl-21946277

ABSTRACT

Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cell's sensitivity to Hsp90 inhibition.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , HSP90 Heat-Shock Proteins/metabolism , Neoplasms/metabolism , Proteomics/methods , Animals , Antineoplastic Agents/pharmacology , Benzodioxoles/pharmacology , Cell Line, Tumor , Computational Biology , Drug Discovery , Gene Expression Regulation, Neoplastic/drug effects , HSP90 Heat-Shock Proteins/genetics , Humans , Neoplasms/genetics , Purines/pharmacology , Signal Transduction
10.
Int J Cancer ; 128(3): 587-96, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-20473878

ABSTRACT

Members of the polo-like kinases (Plk1, Plk2, Plk3 and Plk4) are involved in the regulation of various stages of the cell cycle and have been implicated in cancer progression. Unlike its other family members, the expression of Plk3 remains steady during cell cycle progression, suggesting that its activity may be spatiotemporally regulated. However, the mechanism of regulation of Plk3 activity is not well understood. Here, we show that calcium- and integrin-binding protein 1 (CIB1), a Plk3 interacting protein, is widely expressed in various cancer cell lines. Expression of CIB1 mRNA as well as protein is increased in breast cancer tissue as compared to normal tissue. CIB1 constitutively interacts with Plk3 as determined by both in vitro and in vivo assays. This interaction of CIB1 with Plk3 is independent of intracellular Ca(2+). Furthermore, binding of CIB1 results in inhibition of Plk3 kinase activity both in vitro and in vivo. Interestingly, this inhibition of the Plk3 activity by CIB1 is Ca(2+)-dependent. Taken together, our results suggest that CIB1 is a regulatory subunit of Plk3 and it regulates Plk3 activity in a Ca(2+)-dependent manner. Furthermore, upregulation of CIB1 in cancer cells could thus inhibit Plk3 activity leading to abnormal cell cycle regulation in breast cancer cells. Thus, in addition to Plk3, CIB1 may be a potential biomarker and target for therapeutic intervention of breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Calcium-Binding Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Base Sequence , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Calcium/metabolism , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Female , Humans , Immunohistochemistry , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Double-Stranded/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Tumor Suppressor Proteins , Up-Regulation
11.
J Med Chem ; 64(3): 1545-1557, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33428418

ABSTRACT

The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Silencing , HSP90 Heat-Shock Proteins/genetics , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Models, Molecular , Molecular Conformation , Neoplasms/drug therapy , Protein Folding , Small Molecule Libraries , Structure-Activity Relationship , Substrate Specificity , Urinary Bladder Neoplasms/drug therapy
12.
Mol Pharmacol ; 78(6): 1072-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20813864

ABSTRACT

Inactivating mutations of the von Hippel-Lindau (VHL) tumor suppressor gene are associated with inherited VHL syndrome, which is characterized by susceptibility to a variety of neoplasms, including central nervous system hemangioblastoma and clear cell renal cell carcinoma (CCRCC). Mutations in the VHL gene are also found in the majority of sporadic clear cell renal carcinoma, the most common malignant neoplasm of the human kidney. Inactivation of VHL ubiquitin ligase is associated with normoxic stabilization of hypoxia-inducible factor-1α and 2-α (HIF-1α and HIF-2α), transcriptional regulators of tumor angiogenesis, invasion, survival, and glucose utilization. HIF-2α has been particularly implicated in the development of CCRCC. Although several inhibitors of HIF-1α have been described, these drugs typically have a minimal affect on HIF-2α. 786-O is a VHL-deficient CCRCC cell line that constitutively expresses only HIF-2α and is therefore suitable for the screening of novel HIF-2α inhibitors. Using this cell line, we have identified emetine as a specific inhibitor of HIF-2α protein stability and transcriptional activity. Without altering HIF-2α mRNA level, emetine rapidly and dramatically down-regulated HIF-2α protein expression in 786-O cells. HIF-2α down-regulation was accompanied by HIF-2α ubiquitination and was reversed by proteasome inhibition. Emetine-induced HIF-2α down-regulation was confirmed in three additional VHL-renal cancer cell lines, was insensitive to the prolyl hydroxylase inhibitor dimethyloxaloyl glycine, and did not require neural precursor cell expressed developmentally down-regulated-8, suggesting that emetine accesses a previously undescribed cullin-independent proteasome degradation pathway for HIF-2α. These data support the use of emetine or structurally related compounds as useful leads for the identification of novel HIF-2α inhibitors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Emetine/pharmacology , Kidney Neoplasms/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/physiology , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Cell Line, Tumor , Down-Regulation/drug effects , Humans
13.
Mol Cell Biol ; 27(1): 220-8, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17030621

ABSTRACT

The receptor tyrosine kinase ErbB2 plays a crucial role in tumorigenesis. We showed previously that the molecular chaperone Hsp90 protects ErbB2 from proteasome-mediated degradation by binding to a short loop structure in the N-lobe of the kinase domain. Here we show that loss of Hsp90 binding correlates with enhanced ErbB2 kinase activity and its transactivating potential, concomitant with constitutively increased phosphorylation of Tyr877, located in the activation loop of the kinase domain. We show further that Tyr877 phosphorylation is mediated by Src and that it is necessary for the enhanced kinase activity of ErbB2. Finally, computer modeling of the kinase domain suggests a phosphorylation-dependent reorientation of the activation loop, denoting the importance of Tyr877 phosphorylation for ErbB2 activity. These findings suggest that Hsp90 binding to ErbB2 participates in regulation of kinase activity as well as kinase stability.


Subject(s)
Gene Expression Regulation, Enzymologic , HSP90 Heat-Shock Proteins/physiology , Receptor, ErbB-2/biosynthesis , Up-Regulation , src-Family Kinases/metabolism , 3T3 Cells , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Tyrosine/chemistry
14.
J Thromb Haemost ; 18(5): 1197-1209, 2020 05.
Article in English | MEDLINE | ID: mdl-32022992

ABSTRACT

BACKGROUND: Platelets play a pivotal role in hemostasis, wound healing, and inflammation, and are thus implicated in a variety of diseases, including cancer. Platelet function is associated with release of granule content, cellular shape change, and upregulation of receptors that promote establishment of a thrombus and maintenance of hemostasis. OBJECTIVES: The role of heat shock proteins (Hsps) in modulating platelet function has been studied for a number of years, but comparative roles of individual Hsps have not been thoroughly examined. METHODS: We utilized a panel of specific inhibitors of Hsp40, Hsp70, Hsp90, and Grp94 (the endoplasmic reticulum homolog of Hsp90) to assess their impact on several aspects of platelet function. RESULTS: Inhibition of each of the aforementioned Hsps reduced alpha granule release. In contrast, there was some selectivity in impacts on dense granule release. Thromboxane synthesis was impaired after exposure to inhibitors of Hsp40, Hsp90, and Grp94, but not after inhibition of Hsp70. Both expression of active glycoprotein IIb/IIIa (GPIIb/IIIa) and fibrinogen-induced platelet shape change were diminished by our inhibitors. In contrast, aggregation was selectively abrogated after inhibition of Hsp40 or Hsp90. Lastly, activated platelet-cancer cell interactions were reduced by inhibition of both Hsp70 and Grp94. CONCLUSIONS: These data suggest the importance of Hsp networks in regulating platelet activity.


Subject(s)
Heat-Shock Proteins , Platelet Glycoprotein GPIIb-IIIa Complex , Blood Platelets , Heat-Shock Proteins/pharmacology , Hemostasis , Humans , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology
15.
Cancer Chemother Pharmacol ; 86(6): 815-827, 2020 12.
Article in English | MEDLINE | ID: mdl-33095286

ABSTRACT

PURPOSE: We conducted a phase 1 trial of the HSP90 inhibitor onalespib in combination with the CDK inhibitor AT7519, in patients with advanced solid tumors to determine the safety profile and maximally tolerated dose, pharmacokinetics, preliminary antitumor activity, and to assess the pharmacodynamic (PD) effects on HSP70 expression in patient-derived PBMCs and plasma. METHODS: This study followed a 3 + 3 trial design with 1 week of intravenous (IV) onalespib alone, followed by onalespib/AT7519 (IV) on days 1, 4, 8, and 11 of a 21-days cycle. PK and PD samples were collected at baseline, after onalespib alone, and following combination therapy. RESULTS: Twenty-eight patients were treated with the demonstration of downstream target engagement of HSP70 expression in plasma and PBMCs. The maximally tolerated dose was onalespib 80 mg/m2 IV + AT7519 21 mg/m2 IV. Most common drug-related adverse events included Grade 1/2 diarrhea (79%), fatigue (54%), mucositis (57%), nausea (46%), and vomiting (50%). Partial responses were seen in a palate adenocarcinoma and Sertoli-Leydig tumor; a colorectal and an endometrial cancer patient both remained on study for ten cycles with stable disease as the best response. There were no clinically relevant PK interactions for either drug. CONCLUSIONS: Combined onalespib and AT7519 is tolerable, though below monotherapy RP2D. Promising preliminary clinical activity was seen. Further benefit may be seen with the incorporation of molecular signature pre-selection. Further biomarker development will require the assessment of the on-target impact on relevant client proteins in tumor tissue.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/toxicity , Benzamides/toxicity , Isoindoles/toxicity , Neoplasms/drug therapy , Piperidines/toxicity , Pyrazoles/toxicity , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Benzamides/administration & dosage , Benzamides/pharmacokinetics , Drug Administration Schedule , Female , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/blood , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Infusions, Intravenous , Isoindoles/administration & dosage , Isoindoles/pharmacokinetics , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Staging , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/pathology , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Proof of Concept Study , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics
16.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049011

ABSTRACT

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Subject(s)
Drug Therapy, Combination/methods , L-Lactate Dehydrogenase/antagonists & inhibitors , Neoplasms/immunology , Animals , Humans , Mice , Neoplasms/drug therapy
17.
Chembiochem ; 10(17): 2753-9, 2009 Nov 23.
Article in English | MEDLINE | ID: mdl-19856365

ABSTRACT

The pochoximes, based on the radicicol pharmacophore, are potent inhibitors of heat shock protein 90 (HSP90) that retain their activity in vivo. Herein we report an extended library that broadly explores the structure-activity relationship (SAR) of the pochoximes with four points of diversity. Several modifications were identified that afford improved cellular efficacy, new opportunities for conjugation, and further diversifications. Cocrystal structures of pochoximes A and B with HSP90 show that pochoximes bind to a different conformation of HSP90 than radicicol and provide a rationale for the enhanced affinity of the pochoximes relative to radicicol and the pochonins.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Oximes/chemistry , Cell Line , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Macrolides/chemistry , Macrolides/metabolism , Molecular Structure , Oximes/chemical synthesis , Protein Structure, Tertiary , Small Molecule Libraries , Structure-Activity Relationship
18.
Future Oncol ; 5(5): 679-88, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19519207

ABSTRACT

Cancer metastasis is the result of complex processes, including alteration of cell adhesion/motility in the microenvironment and neoangiogenesis, that are necessary to support cancer growth in tissues distant from the primary tumor. The molecular chaperone heat-shock protein 90 (Hsp90), also termed the 'cancer chaperone', plays a crucial role in maintaining the stability and activity of numerous signaling proteins involved in these processes. Small-molecule Hsp90 inhibitors display anticancer activity both in vitro and in vivo, and multiple Phase II and Phase III clinical trials of several structurally distinct Hsp90 inhibitors are currently underway. In this review, we will highlight the importance of Hsp90 in cancer metastasis and the therapeutic potential of Hsp90 inhibitors as antimetastasis drugs.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Neoplasm Metastasis/pathology , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Clinical Trials as Topic , HSP90 Heat-Shock Proteins/pharmacology , Humans , Neoplasms/drug therapy
19.
Nat Commun ; 10(1): 2574, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189925

ABSTRACT

Complex conformational dynamics are essential for function of the dimeric molecular chaperone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimerization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90.


Subject(s)
Adenosine Triphosphatases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Domains/genetics , Adenosine Triphosphatases/genetics , Glutamic Acid/genetics , HEK293 Cells , HSP90 Heat-Shock Proteins/genetics , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation/physiology , Structure-Activity Relationship , Tyrosine/genetics , Tyrosine/metabolism
20.
Cancer Sci ; 99(9): 1853-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18637013

ABSTRACT

Angiogenesis is an inevitable event in tumor progression and metastasis, and thus has been a compelling target for cancer therapy in recent years. Effective inhibition of tumor progression and metastasis could become a promising way to treat tumor-induced angiogenesis. We discovered that a fungus, Neosartorya sp., isolated from a soil sample, produced a new angiogenesis inhibitor, which we designated azaspirene. Azaspirene was previously shown to inhibit human umbilical vein endothelial cell (HUVEC) migration induced by vascular endothelial growth factor (VEGF) at an effective dose, 100% of 27 micromol/L without significant cell toxicity. In the present study, we investigated the antiangiogenic activity of azaspirene in vivo. Azaspirene treatment reduced the number of tumor-induced blood vessels. Administration of azaspirene at 30 microg/egg resulted in inhibition of angiogenesis (23.6-45.3% maximum inhibition relative to the controls) in a chicken chorioallantoic membrane assay. Next, we elucidated the molecular mechanism of antiangiogenesis of azaspirene. We investigated the effects of azaspirene on VEGF-induced activation of the mitogen-activated protein kinase signaling pathway in HUVEC. In vitro experiments indicated that azaspirene suppressed Raf-1 activation induced by VEGF without affecting the activation of kinase insert domain-containing receptor/fetal liver kinase 1 (VEGF receptor 2). Additionally, azaspirene preferentially inhibited the growth of HUVEC but not that of the non-vascular endothelial cells NIH3T3, HeLa, MSS31, and MCF-7. Taken together, these results demonstrate that azaspirene is a novel inhibitor of angiogenesis and Raf-1 activation that contains a unique carbon skeleton in its molecular structure.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelial Cells/drug effects , Neovascularization, Pathologic/drug therapy , Proto-Oncogene Proteins c-raf/metabolism , Pyrrolidinones/pharmacology , Spiro Compounds/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Animals , Chick Embryo , Humans
SELECTION OF CITATIONS
SEARCH DETAIL