Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Microbiol ; 26(3): e16599, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459641

ABSTRACT

The occurrence of facultative endosymbionts has been studied in many commercially important crop pest aphids, but their occurrence and effects in non-commercial aphid species in natural populations have received less attention. We screened 437 aphid samples belonging to 106 aphid species for the eight most common facultative aphid endosymbionts. We found one or more facultative endosymbionts in 53% (56 of 106) of the species investigated. This likely underestimates the situation in the field because facultative endosymbionts are often present in only some colonies of an aphid species. Oligophagous aphid species carried facultative endosymbionts significantly more often than monophagous species. We did not find a significant correlation between ant tending and facultative endosymbiont presence. In conclusion, we found that facultative endosymbionts are common among aphid populations. This study is, to our knowledge, the first of its kind in the Netherlands and provides a basis for future research in this field. For instance, it is still unknown in what way many of these endosymbionts affect their hosts, which is important for determining the importance of facultative endosymbionts to community dynamics.


Subject(s)
Aphids , Animals , Symbiosis
2.
PLoS One ; 19(5): e0302688, 2024.
Article in English | MEDLINE | ID: mdl-38809856

ABSTRACT

The sweat bee Halictus rubicundus is an important pollinator with a large latitudinal range and many potential barriers to gene flow. Alongside typical physical barriers, including mountain ranges and oceans, the climate may also impose restrictions on gene flow in this species. The climate influences voltinism and sociality in H. rubicundus, which is bivoltine and can nest socially at warmer lower latitudes but tends to be univoltine and solitary in the cooler north. Variation in voltinism could result in phenological differences, potentially limiting gene flow, but a previous study found no evidence for this in H. rubicundus populations in mainland Britain. Here we extend the previous study to consider populations of H. rubicundus at extreme northern and southern latitudes in the UK. We found that bees from a population in the far north of Scotland were genetically differentiated from bees collected in Cornwall in the south-west of England. In contrast, bees collected across the Irish Sea in Northern Ireland showed slight genetic overlap with both the Scottish and Cornish bees. Our results suggest that when populations at extreme latitudes are considered, phenology and the climate may act alongside physical barriers such as the Scottish Highlands and the Irish Sea to restrict gene flow in H. rubicundus. We discuss the implications of our results for local adaptation in the face of rapidly changing selection pressures which are likely under climate change.


Subject(s)
Gene Flow , Animals , Bees/genetics , Bees/physiology , Genetic Variation , Microsatellite Repeats/genetics , Scotland , Genetics, Population
3.
Evol Appl ; 15(10): 1580-1593, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36330308

ABSTRACT

Biological control (biocontrol) of crop pests is a sustainable alternative to the use of biodiversity and organismal health-harming chemical pesticides. Aphids can be biologically controlled with parasitoid wasps; however, variable results of parasitoid-based aphid biocontrol in greenhouses are reported. Aphids may display genetically encoded (endogenous) defences that increase aphid resistance against parasitoids as under high parasitoid pressure there will be selection for parasitoid-resistant aphids, potentially affecting the success of parasitoid-based aphid biocontrol in greenhouses. Additionally, aphids may carry secondary bacterial endosymbionts that protect them against parasitoids. We studied whether there is variation in either of these heritable elements in aphids in greenhouses of sweet pepper, an agro-economically important crop in the Netherlands that is prone to aphid pests and where pest management heavily relies on biocontrol. We sampled aphid populations in organic (biocontrol only) and conventional (biocontrol and pesticides) sweet pepper greenhouses in the Netherlands during the 2019 crop growth season. We assessed the aphid microbiome through both diagnostic PCR and 16S rRNA sequencing and did not detect any secondary endosymbionts in the two most encountered aphid species, Myzus persicae and Aulacorthum solani. We also compared multiple aphid lines collected from different greenhouses for variation in levels of endogenous-based resistance against the parasitoids commonly used as biocontrol agents. We found no differences in the levels of endogenous-based resistance between different aphid lines. This study does not support the hypothesis that protective endosymbionts or the presence of endogenous resistant aphid lines affects the success of parasitoid-based biocontrol of aphids in Dutch greenhouses. Future investigations will need to address what is causing the variable successes of aphid biocontrol and what (biological and management-related) lessons can be learned for aphid control in other crops, and biocontrol in general.

SELECTION OF CITATIONS
SEARCH DETAIL