Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Biol Chem ; 299(9): 105072, 2023 09.
Article in English | MEDLINE | ID: mdl-37474104

ABSTRACT

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Subject(s)
Arginine , Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Phosphorylation , Arginine/metabolism , Humans , Animals , Mice , Cell Line , HEK293 Cells , Enzyme Activation/genetics , Mutation , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Structure, Tertiary , Models, Molecular , Crystallization , Amino Acid Sequence
2.
Nucleic Acids Res ; 49(19): 10818-10834, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34614169

ABSTRACT

KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.


Subject(s)
Adenosine/analogs & derivatives , Anion Exchange Protein 1, Erythrocyte/genetics , Hernia, Hiatal/genetics , Microcephaly/genetics , Nephrosis/genetics , RNA, Transfer/genetics , Saccharomyces cerevisiae Proteins/genetics , Adenosine/metabolism , Animals , Anion Exchange Protein 1, Erythrocyte/chemistry , Anion Exchange Protein 1, Erythrocyte/metabolism , Archaea/genetics , Archaea/metabolism , Conserved Sequence , Gene Expression Regulation , Hernia, Hiatal/metabolism , Hernia, Hiatal/pathology , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Microcephaly/metabolism , Microcephaly/pathology , Models, Molecular , Nephrosis/metabolism , Nephrosis/pathology , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569817

ABSTRACT

The p38 members of the mitogen-activated protein kinases (MAPKs) family mediate various cellular responses to stress conditions, inflammatory signals, and differentiation factors. They are constitutively active in chronic inflammatory diseases and some cancers. The differences between their transient effects in response to signals and the chronic effect in diseases are not known. The family is composed of four isoforms, of which p38α seems to be abnormally activated in diseases. p38α and p38ß are almost identical in sequence, structure, and biochemical and pharmacological properties, and the specific unique effects of each of them, if any, have not yet been revealed. This study aimed to reveal the specific effects induced by p38α and p38ß, both when transiently activated in response to stress and when chronically active. This was achieved via large-scale proteomics and phosphoproteomics analyses using stable isotope labeling of two experimental systems: one, mouse embryonic fibroblasts (MEFs) deficient in each of these p38 kinases and harboring either an empty vector or vectors expressing p38αWT, p38ßWT, or intrinsically active variants of these MAPKs; second, induction of transient stress by exposure of MEFs, p38α-/-, and p38ß-/- MEFs to anisomycin. Significant differences in the repertoire of the proteome and phosphoproteome between cells expressing active p38α and p38ß suggest distinct roles for each kinase. Interestingly, in both cases, the constitutive activation induced adaptations of the cells to the chronic activity so that known substrates of p38 were downregulated. Within the dramatic effect of p38s on the proteome and phosphoproteome, some interesting affected phosphorylation sites were those found in cancer-associated p53 and Hspb1 (HSP27) proteins and in cytoskeleton-associated proteins. Among these, was the stronger direct phosphorylation by p38α of p53-Ser309, which was validated on the Ser315 in human p53. In summary, this study sheds new light on the differences between chronic and transient p38α and p38ß signaling and on the specific targets of these two kinases.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Proteome , Animals , Humans , Mice , Proteome/metabolism , Tumor Suppressor Protein p53/metabolism , Fibroblasts/metabolism , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Trends Biochem Sci ; 41(11): 938-953, 2016 11.
Article in English | MEDLINE | ID: mdl-27594179

ABSTRACT

Eukaryotic protein kinases (EPKs) control most biological processes and play central roles in many human diseases. To become catalytically active, EPKs undergo conversion from an inactive to an active conformation, an event that depends upon phosphorylation of their activation loop. Intriguingly, EPKs can use their own catalytic activity to achieve this critical phosphorylation. In other words, paradoxically, EPKs catalyze autophosphorylation when supposedly in their inactive state. This indicates the existence of another important conformation that specifically permits autophosphorylation at the activation loop, which in turn imposes adoption of the active conformation. This can be considered a prone-to-autophosphorylate conformation. Recent findings suggest that in prone-to-autophosphorylate conformations catalytic motifs are aligned allosterically, by dimerization or by regulators, and support autophosphorylation in cis or trans.


Subject(s)
Protein Interaction Domains and Motifs , Protein Kinases/chemistry , Proteome/chemistry , Allosteric Regulation , Allosteric Site , Amino Acid Motifs , Biocatalysis , Catalytic Domain , Gene Expression , Humans , Phosphorylation , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Multimerization , Proteome/genetics , Proteome/metabolism
5.
J Biol Chem ; 289(34): 23546-56, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25006254

ABSTRACT

Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38ß, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38ß. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38ß in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38ß and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.


Subject(s)
Isoenzymes/metabolism , Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Amino Acid Sequence , Biocatalysis , HEK293 Cells , Humans , Isoenzymes/chemistry , Molecular Sequence Data , Phosphorylation , Sequence Homology, Amino Acid , p38 Mitogen-Activated Protein Kinases/chemistry
6.
Structure ; 32(6): 795-811.e6, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38531363

ABSTRACT

GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.


Subject(s)
Protein Binding , Protein Serine-Threonine Kinases , RNA, Transfer , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , RNA, Transfer/metabolism , RNA, Transfer/chemistry , Binding Sites , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Cryoelectron Microscopy , Molecular Docking Simulation , Models, Molecular , Adenosine Triphosphate/metabolism , Saccharomyces cerevisiae/metabolism , Humans , Histidine/metabolism , Histidine/chemistry , Phosphorylation
7.
Methods Enzymol ; 667: 729-773, 2022.
Article in English | MEDLINE | ID: mdl-35525560

ABSTRACT

Bud32 is a member of the protein kinase superfamily that is invariably conserved in all eukaryotic and archaeal organisms. In both of these kingdoms, Bud32 forms part of the KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) complex together with the three other core subunits Kae1, Cgi121 and Pcc1. KEOPS functions to generate the universal and essential tRNA post-transcriptional modification N6-theronylcarbamoyl adenosine (t6A), which is present at position A37 in all tRNAs that bind to codons with an A in the first position (ANN decoding tRNAs) and is essential for the fidelity of translation. Mutations in KEOPS genes in humans underlie the severe genetic disease Galloway-Mowat syndrome, which results in childhood death. KEOPS activity depends on two major functions of Bud32. Firstly, Bud32 facilitates efficient tRNA substrate recruitment to KEOPS and helps in positioning the A37 site of the tRNA in the active site of Kae1, which carries out the t6A modification reaction. Secondly, the enzymatic activity of Bud32 is required for the ability of KEOPS to modify tRNA. Unlike conventional protein kinases, which employ their enzymatic activity for phosphorylation of protein substrates, Bud32 employs its enzymatic activity to function as an ATPase. Herein, we present a comprehensive suite of assays to monitor the activity of Bud32 in KEOPS in vitro and in vivo. We present protocols for the purification of the archaeal KEOPS proteins and of a tRNA substrate, as well as protocols for monitoring the ATPase activity of Bud32 and for analyzing its role in tRNA binding. We further present a complementary protocol for monitoring the role Bud32 has in cell growth in yeast.


Subject(s)
Archaeal Proteins , Saccharomyces cerevisiae Proteins , Adenosine Triphosphatases/metabolism , Archaeal Proteins/metabolism , Humans , Protein Kinases/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
Structure ; 29(9): 975-988.e5, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33989513

ABSTRACT

Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination. To gain insight into this poorly understood interaction, we have solved the 3.2 Å X-ray crystal structure of the N terminus of Skp2 bound to cyclin A. The structure reveals a bipartite mode of interaction with two motifs in Skp2 recognizing two discrete surfaces on cyclin A. The uncovered binding mechanism allows for a rationalization of the inhibitory effect of Skp2 on CDK2-cyclin A kinase activity toward the RxL motif containing substrates and raises the possibility that other intermolecular regulators and substrates may use similar non-canonical modes of interaction for cyclin targeting.


Subject(s)
Cyclin A/metabolism , S-Phase Kinase-Associated Proteins/chemistry , Binding Sites , Cyclin A/chemistry , Humans , Molecular Docking Simulation , Protein Binding , S-Phase Kinase-Associated Proteins/metabolism
9.
Nat Commun ; 11(1): 6233, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277478

ABSTRACT

The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


Subject(s)
Archaeal Proteins/chemistry , Methanocaldococcus/metabolism , Multiprotein Complexes/chemistry , RNA, Transfer/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Crystallography, X-Ray , Methanocaldococcus/genetics , Models, Molecular , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nucleic Acid Conformation , Protein Binding , Protein Domains , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Lys/chemistry , RNA, Transfer, Lys/genetics , RNA, Transfer, Lys/metabolism
10.
Biochemistry ; 48(11): 2497-504, 2009 Mar 24.
Article in English | MEDLINE | ID: mdl-19209848

ABSTRACT

A common feature of the regulation of many protein kinases is their phosphorylation on a conserved Thr residue in the activation loop. In the family of mitogen-activated protein kinases (MAPKs), another phosphorylation event, on a Tyr residue neighboring this Thr (in a TXY motif), is required for activity. Many studies suggested that this dual phosphorylation is an absolute requirement for MAPK activation, assigning an equal role for the Thr and Tyr of the phosphorylation motif. Here we tested this notion by producing p38alpha variants carrying a T180A or Y182F mutation or both and assessing their activity in vitro and in vivo. These mutations were inserted into the p38alpha(WT) molecule or into constitutively active variants of p38alpha. We found that p38alpha molecules carrying the T180A mutations lost their activity altogether. On the other hand, p38alpha(WT) and intrinsically active mutants carrying the Y182F mutation are activated by MKK6 in vitro and in vivo, although to low levels, mainly due to reduced affinity for the substrate. However, the intrinsically active variants carrying the Y182F mutation lost most of their autophosphorylation and intrinsic activities. Thus, Thr180 is essential for catalysis, whereas Tyr182 is required for autoactivation and substrate recognition. The p38alpha(Y182F) mutants are capable of activating reporter genes, suggesting that they are not only catalytically active to some degree but also capable of inducing the relevant downstream pathway. We suggest that p38s are active when only the Thr residue of the phosphorylation lip is phosphorylated, similar to many other kinases in nature.


Subject(s)
Threonine/chemistry , Threonine/metabolism , p38 Mitogen-Activated Protein Kinases/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism , Enzyme Activation , Humans , Mutation , Phosphorylation , Threonine/genetics , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism , p38 Mitogen-Activated Protein Kinases/genetics
11.
Biosci Rep ; 36(2)2016.
Article in English | MEDLINE | ID: mdl-26987986

ABSTRACT

Many eukaryotic protein kinases (EPKs) are autoactivated through autophosphorylation of their activation loop. Mitogen-activated protein (MAP) kinases do not autophosphorylate spontaneously; relying instead upon mitogen-activated protein kinase (MAPK) kinases (MKKs) for their activation loop phosphorylation. Yet, in previous studies we identified mutations in the yeast MAPK high osmolarity glycerol (Hog1) that render it capable of spontaneous autophosphorylation and consequently intrinsically active (MKK-independent). Four of the mutations occurred in hydrophobic residues, residing in the αC-helix, which is conserved in all EPKs, and in the αL16-helix that is unique to MAPKs. These four residues interact together forming a structural element termed 'hydrophobic core'. A similar element exists in the Hog1's mammalian orthologues p38s. Here we show that the 'hydrophobic core' is a loose suppressor of Hog1's autophosphorylation. We inserted 18 point mutations into this core, 17 of which were able to render Hog1 MKK-independent. In p38s, however, only a very few mutations in the equivalent residues rendered these proteins intrinsically active. Structural analysis revealed that a salt bridge between the αC-helix and the αL16-helix that exists in p38α may not exist in Hog1. This bond further stabilizes the 'hydrophobic core' of p38, making p38 less prone to de-repressing its concealed autophosphorylation. Mutating equivalent hydrophobic residues in Jnk1 and Erk2 has no effect on their autophosphorylation. We propose that specific structural elements developed in the course of evolution to suppress spontaneous autophosphorylation of Hog1/p38. The suppressors were kept wobbly, probably to allow activation by induced autophosphorylation, but became stricter in mammalian p38s than in the yeast Hog1.


Subject(s)
Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Structure, Secondary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Mol Cell Biol ; 36(10): 1540-54, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26976637

ABSTRACT

Many enzymes are self-regulated and can either inhibit or enhance their own catalytic activity. Enzymes that do both are extremely rare. Many protein kinases autoactivate by autophosphorylating specific sites at their activation loop and are inactivated by phosphatases. Although mitogen-activated protein kinases (MAPKs) are usually activated by dual phosphorylation catalyzed by MAPK kinases (MAPKKs), the MAPK p38ß is exceptional and is capable of self-activation by cis autophosphorylation of its activation loop residue T180. We discovered that p38ß also autophosphorylates in trans two previously unknown sites residing within a MAPK-specific structural element known as the MAPK insert: T241 and S261. Whereas phosphorylation of T180 evokes catalytic activity, phosphorylation of S261 reduces the activity of T180-phosphorylated p38ß, and phosphorylation of T241 reduces its autophosphorylation in trans Both phosphorylations do not affect the activity of dually phosphorylated p38ß. T241 of p38ß is found phosphorylated in vivo in bone and muscle tissues. In myogenic cell lines, phosphorylation of p38ß residue T241 is correlated with differentiation to myotubes. T241 and S261 are also autophosphorylated in intrinsically active variants of p38α, but in this protein, they probably play a different role. We conclude that p38ß is an unusual enzyme that automodulates its basal, MAPKK-independent activity by several autophosphorylation events, which enhance and suppress its catalytic activity.


Subject(s)
Bone and Bones/metabolism , Mitogen-Activated Protein Kinase 11/metabolism , Muscles/metabolism , Serine/metabolism , Threonine/metabolism , Animals , Catalytic Domain , Cell Differentiation , Cell Line , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 11/chemistry , Phosphorylation
13.
Mol Biol Cell ; 27(6): 1026-39, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26658610

ABSTRACT

The receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade. Although all oncogenic mutations in the pathway result in strong activation of Erks, activating mutations in Erks themselves were not reported in cancers. Here we used spontaneously active Erk variants to check whether Erk's activity per se is sufficient for oncogenic transformation. We show that Erk1(R84S) is an oncoprotein, as NIH3T3 cells that express it form foci in tissue culture plates, colonies in soft agar, and tumors in nude mice. We further show that Erk1(R84S) and Erk2(R65S) are intrinsically active due to an unusual autophosphorylation activity they acquire. They autophosphorylate the activatory TEY motif and also other residues, including the critical residue Thr-207 (in Erk1)/Thr-188 (in Erk2). Strikingly, Erk2(R65S) efficiently autophosphorylates its Thr-188 even when dually mutated in the TEY motif. Thus this study shows that Erk1 can be considered a proto-oncogene and that Erk molecules possess unusual autoregulatory properties, some of them independent of TEY phosphorylation.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Mutation, Missense , Amino Acid Motifs , Animals , Cell Transformation, Neoplastic/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Mice, Nude , NIH 3T3 Cells , Phosphorylation , Proto-Oncogene Mas , Rats
14.
Cell Rep ; 7(2): 501-513, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24726367

ABSTRACT

The kinase Mnk2 is a substrate of the MAPK pathway and phosphorylates the translation initiation factor eIF4E. In humans, MKNK2, the gene encoding for Mnk2, is alternatively spliced yielding two splicing isoforms with differing last exons: Mnk2a, which contains a MAPK-binding domain, and Mnk2b, which lacks it. We found that the Mnk2a isoform is downregulated in breast, lung, and colon tumors and is tumor suppressive. Mnk2a directly interacts with, phosphorylates, activates, and translocates p38α-MAPK into the nucleus, leading to activation of its target genes, increasing cell death and suppression of Ras-induced transformation. Alternatively, Mnk2b is pro-oncogenic and does not activate p38-MAPK, while still enhancing eIF4E phosphorylation. We further show that Mnk2a colocalization with p38α-MAPK in the nucleus is both required and sufficient for its tumor-suppressive activity. Thus, Mnk2a downregulation by alternative splicing is a tumor suppressor mechanism that is lost in some breast, lung, and colon tumors.


Subject(s)
Alternative Splicing , Cell Nucleus/metabolism , Cell Transformation, Neoplastic/metabolism , MAP Kinase Signaling System , Protein Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Active Transport, Cell Nucleus , Animals , Mice , Protein Binding , Protein Serine-Threonine Kinases/genetics , ras Proteins/metabolism
15.
PLoS One ; 7(9): e44749, 2012.
Article in English | MEDLINE | ID: mdl-22984552

ABSTRACT

Many protein kinases require phosphorylation at their activation loop for induction of catalysis. Mitogen-activated protein kinases (MAPKs) are activated by a unique mode of phosphorylation, on neighboring Tyrosine and Threonine residues. Whereas many kinases obtain their activation via autophosphorylation, MAPKs are usually phosphorylated by specific, dedicated, MAPK kinases (MAP2Ks). Here we show however, that the yeast MAPK Hog1, known to be activated by the MAP2K Pbs2, is activated in pbs2Δ cells via an autophosphorylation activity that is induced by osmotic pressure. We mapped a novel domain at the Hog1 C-terminal region that inhibits this activity. Removal of this domain provides a Hog1 protein that is partially independent of MAP2K, namely, partially rescues osmostress sensitivity of pbs2Δ cells. We further mapped a short domain (7 amino acid residues long) that is critical for induction of autophosphorylation. Its removal abolishes autophosphorylation, but maintains Pbs2-mediated phosphorylation. This 7 amino acids stretch is conserved in the human p38α. Similar to the case of Hog1, it's removal from p38α abolishes p38α's autophosphorylation capability, but maintains, although reduces, its activation by MKK6. This study joins a few recent reports to suggest that, like many protein kinases, MAPKs are also regulated via induced autoactivation.


Subject(s)
Gene Expression Regulation, Enzymologic , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Fungal Proteins/chemistry , HEK293 Cells , Humans , MAP Kinase Kinase 6/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Models, Genetic , Mutation , Osmotic Pressure , Phosphorylation , Plasmids/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL