Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nature ; 590(7845): 290-299, 2021 02.
Article in English | MEDLINE | ID: mdl-33568819

ABSTRACT

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Genomics , National Heart, Lung, and Blood Institute (U.S.) , Precision Medicine , Cytochrome P-450 CYP2D6/genetics , Haplotypes/genetics , Heterozygote , Humans , INDEL Mutation , Loss of Function Mutation , Mutagenesis , Phenotype , Polymorphism, Single Nucleotide , Population Density , Precision Medicine/standards , Quality Control , Sample Size , United States , Whole Genome Sequencing/standards
2.
Hum Mol Genet ; 30(6): 485-499, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33693707

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with high mortality. The cellular origins of PDAC are largely unknown; however, ductal cells, especially centroacinar cells (CACs), have several characteristics in common with PDAC, such as expression of SOX9 and components of the Notch-signaling pathway. Mutations in KRAS and alterations to Notch signaling are common in PDAC, and both these pathways regulate the transcription factor SOX9. To identify genes regulated by SOX9, we performed siRNA knockdown of SOX9 followed by RNA-seq in PANC-1s, a human PDAC cell line. We report 93 differentially expressed (DE) genes, with convergence on alterations to Notch-signaling pathways and ciliogenesis. These results point to SOX9 and Notch activity being in a positive feedback loop and SOX9 regulating cilia production in PDAC. We additionally performed ChIP-seq in PANC-1s to identify direct targets of SOX9 binding and integrated these results with our DE gene list. Nine of the top 10 downregulated genes have evidence of direct SOX9 binding at their promoter regions. One of these targets was the cancer stem cell marker EpCAM. Using whole-mount in situ hybridization to detect epcam transcript in zebrafish larvae, we demonstrated that epcam is a CAC marker and that Sox9 regulation of epcam expression is conserved in zebrafish. Additionally, we generated an epcam null mutant and observed pronounced defects in ciliogenesis during development. Our results provide a link between SOX9, EpCAM and ciliary repression that can be exploited in improving our understanding of the cellular origins and mechanisms of PDAC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cilia/genetics , Epithelial Cell Adhesion Molecule/metabolism , Pancreatic Neoplasms/pathology , SOX9 Transcription Factor/metabolism , Animals , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Movement , Cell Proliferation , Cilia/metabolism , Epithelial Cell Adhesion Molecule/genetics , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , SOX9 Transcription Factor/genetics , Signal Transduction , Zebrafish
3.
Dev Biol ; 413(1): 8-15, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26963675

ABSTRACT

The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing ß cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace ß cells in the zebrafish. However, whether CACs contribute to ß-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals.


Subject(s)
Pancreas/embryology , Pancreas/physiology , Pancreatic Ducts/cytology , Regeneration , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Endocrine Cells/cytology , Homeostasis , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Mammals , Mice , Pancreas/cytology , Signal Transduction , Stem Cells/cytology , Zebrafish
4.
Dev Biol ; 418(1): 28-39, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27565026

ABSTRACT

Centroacinar cells (CACs) are ductal Notch-responsive progenitors that in the larval zebrafish pancreas differentiate to form new islets and ultimately contribute to the majority of the adult endocrine mass. Uncovering the mechanisms regulating CAC differentiation will facilitate understanding how insulin-producing ß cells are formed. Previously we reported retinoic acid (RA) signaling and Notch signaling both regulate larval CAC differentiation, suggesting a shared downstream intermediate. Sox9b is a transcription factor important for islet formation whose expression is upregulated by Notch signaling in larval CACs. Here we report that sox9b expression in larval CACs is also regulated by RA signaling. Therefore, we hypothesized that Sox9b is an intermediate between both RA- and Notch-signaling pathways. In order to study the role of Sox9b in larval CACs, we generated two cre/lox based transgenic tools, which allowed us to express full-length or truncated Sox9b in larval CACs. In this way we were able to perform spatiotemporal-controlled Sox9b gain- and loss-of-function studies and observe the subsequent effect on progenitor differentiation. Our results are consistent with Sox9b regulating CAC differentiation by being a downstream intermediate of both RA- and Notch-signaling pathways. We also demonstrate that adult zebrafish with only one functional allele of sox9b undergo accelerated ß-cell regeneration, an observation consistent with sox9b regulating CAC differentiation in adults.


Subject(s)
Cell Differentiation/genetics , Insulin-Secreting Cells/cytology , Pancreas/embryology , SOX9 Transcription Factor/genetics , Tretinoin/metabolism , Zebrafish Proteins/genetics , Zebrafish/embryology , Alleles , Animals , Blood Glucose/genetics , Cell Differentiation/physiology , Cell Movement/genetics , Cell Movement/physiology , Larva/growth & development , Receptors, Notch/metabolism , Regeneration/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction , Zebrafish Proteins/metabolism
5.
Dev Biol ; 394(1): 83-93, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25127993

ABSTRACT

As the developing zebrafish pancreas matures, hormone-producing endocrine cells differentiate from pancreatic Notch-responsive cells (PNCs) that reside within the ducts. These new endocrine cells form small clusters known as secondary (2°) islets. We use the formation of 2° islets in the pancreatic tail of the larval zebrafish as a model of ß-cell neogenesis. Pharmacological inhibition of Notch signaling leads to precocious endocrine differentiation and the early appearance of 2° islets in the tail of the pancreas. Following a chemical screen, we discovered that blocking the retinoic acid (RA)-signaling pathway also leads to the induction of 2° islets. Conversely, the addition of exogenous RA blocks the differentiation caused by Notch inhibition. In this report we characterize the interaction of these two pathways. We first verified that signaling via both RA and Notch ligands act together to regulate pancreatic progenitor differentiation. We produced a transgenic RA reporter, which demonstrated that PNCs directly respond to RA signaling through the canonical transcriptional pathway. Next, using a genetic lineage tracing approach, we demonstrated these progenitors produce endocrine cells following inhibition of RA signaling. Lastly, inhibition of RA signaling using a cell-type specific inducible cre/lox system revealed that RA signaling acts cell-autonomously in PNCs to regulate their differentiation. Importantly, the action of RA inhibition on endocrine formation is evolutionarily conserved, as shown by the differentiation of human embryonic stem cells in a model of human pancreas development. Together, these results revealed a biphasic function for RA in pancreatogenesis. As previously shown by others, RA initially plays an essential role during embryogenesis as it patterns the endoderm and specifies the pancreatic field. We reveal here that later in development RA is involved in negatively regulating the further differentiation of pancreatic progenitors and expands upon the developmental mechanisms by which this occurs.


Subject(s)
Insulin-Secreting Cells/metabolism , Pancreas/embryology , Receptors, Notch/metabolism , Tretinoin/metabolism , Zebrafish/embryology , Animals , Animals, Genetically Modified , Cell Differentiation/drug effects , Cell Line , Cell Lineage , Endocrine Cells/metabolism , Gene Expression Regulation, Developmental , Insulin-Secreting Cells/cytology , Organogenesis , Receptors, Notch/antagonists & inhibitors , Signal Transduction , Tretinoin/antagonists & inhibitors , Tretinoin/pharmacology , Zebrafish Proteins
6.
Dev Biol ; 374(2): 308-18, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23228893

ABSTRACT

Female zebrafish have a prolific reproductive capacity, suggesting that a germline stem cell (GSC) population drives oocyte production. However, a zebrafish female GSC population has yet to be identified. Adult stem cells are defined by their ability to both self-renew and differentiate, and by their localization to a stem cell niche. We show here that mitotic and early meiotic germ cells are present in the adult ovary and that the zebrafish homolog of the conserved vertebrate GSC marker, nanos2, is expressed in a subset of pre-meiotic oogonia in the adult gonad. We propose that these nanos2(+) cells are GSCs. Importantly, we find that mitotic, nanos2(+), and early meiotic germ cells localize to the germinal zone, thus identifying this region as the probable ovarian GSC niche in zebrafish. nanos3, which encodes a conserved RNA-binding protein, is known to be required for the continued production of oocytes in the zebrafish. Although mammalian homologs of nanos3 are expressed in early spermatogonia, no study has defined the role of nanos3 in the regulation of vertebrate GSCs. Here we demonstrate that nanos3 function is required for the maintenance of GSCs, but not for their specification, and propose that nanos2 and nanos3 are partially redundant in this role.


Subject(s)
Gene Expression Regulation, Developmental , Germ Cells/metabolism , Ovary/metabolism , Stem Cells/metabolism , Zebrafish Proteins/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunohistochemistry , In Situ Hybridization , Male , Microscopy, Confocal , Mitosis/genetics , Molecular Sequence Data , Mutation , Ovary/embryology , Ovary/growth & development , Phylogeny , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Homology, Amino Acid , Spermatogonia/cytology , Spermatogonia/metabolism , Zebrafish Proteins/classification , Zebrafish Proteins/metabolism
7.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868038

ABSTRACT

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

8.
Diabetes ; 64(10): 3499-509, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26153247

ABSTRACT

Diabetes is associated with a paucity of insulin-producing ß-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in ß-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after ß-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both ß-cell neogenesis and ß-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis.


Subject(s)
Acinar Cells/physiology , Gene Expression Regulation/physiology , Islets of Langerhans/physiology , Regeneration/physiology , Stem Cells/physiology , Acinar Cells/cytology , Animals , Animals, Genetically Modified , Larva/physiology , Pancreatectomy , RNA/genetics , RNA/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Stem Cells/cytology , Transcriptome , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL