Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Publication year range
1.
Nature ; 631(8021): 663-669, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961290

ABSTRACT

The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically1,2. This results in substantial accumulation of lacate, the end product of anaerobic glycolysis, in cancer cells3. However, how cancer metabolism affects chemotherapy response and DNA repair in general remains incompletely understood. Here we report that lactate-driven lactylation of NBS1 promotes homologous recombination (HR)-mediated DNA repair. Lactylation of NBS1 at lysine 388 (K388) is essential for MRE11-RAD50-NBS1 (MRN) complex formation and the accumulation of HR repair proteins at the sites of DNA double-strand breaks. Furthermore, we identify TIP60 as the NBS1 lysine lactyltransferase and the 'writer' of NBS1 K388 lactylation, and HDAC3 as the NBS1 de-lactylase. High levels of NBS1 K388 lactylation predict poor patient outcome of neoadjuvant chemotherapy, and lactate reduction using either genetic depletion of lactate dehydrogenase A (LDHA) or stiripentol, a lactate dehydrogenase A inhibitor used clinically for anti-epileptic treatment, inhibited NBS1 K388 lactylation, decreased DNA repair efficacy and overcame resistance to chemotherapy. In summary, our work identifies NBS1 lactylation as a critical mechanism for genome stability that contributes to chemotherapy resistance and identifies inhibition of lactate production as a promising therapeutic cancer strategy.


Subject(s)
Cell Cycle Proteins , Drug Resistance, Neoplasm , Lactic Acid , Nuclear Proteins , Recombinational DNA Repair , Animals , Female , Humans , Male , Mice , Acid Anhydride Hydrolases/metabolism , Anaerobiosis , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Genomic Instability , Lactic Acid/metabolism , Lysine/chemistry , Lysine/metabolism , Lysine Acetyltransferase 5/metabolism , Lysine Acetyltransferase 5/genetics , MRE11 Homologue Protein/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Organoids , Glycolysis , Neoadjuvant Therapy , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/deficiency , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Anticonvulsants/pharmacology
2.
Nature ; 616(7957): 563-573, 2023 04.
Article in English | MEDLINE | ID: mdl-37046094

ABSTRACT

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Subject(s)
Endogenous Retroviruses , Immunotherapy , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/virology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/virology , Disease Models, Animal , Endogenous Retroviruses/immunology , Immunotherapy/methods , Lung/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Tumor Microenvironment , B-Lymphocytes/immunology , Cohort Studies , Antibodies/immunology , Antibodies/therapeutic use
3.
Nature ; 607(7917): 163-168, 2022 07.
Article in English | MEDLINE | ID: mdl-35768509

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.


Subject(s)
Epithelial-Mesenchymal Transition , Intercellular Signaling Peptides and Proteins , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Humans , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mesoderm/pathology , Mice , Pancreatic Neoplasms/pathology , Snail Family Transcription Factors
4.
Cell ; 149(3): 642-55, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22541434

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , GATA2 Transcription Factor/metabolism , Gene Regulatory Networks , Lung Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , ras Proteins/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , ras Proteins/genetics
5.
Nature ; 566(7742): 126-130, 2019 02.
Article in English | MEDLINE | ID: mdl-30700911

ABSTRACT

Tubular epithelia are a basic building block of organs and a common site of cancer occurrence1-4. During tumorigenesis, transformed cells overproliferate and epithelial architecture is disrupted. However, the biophysical parameters that underlie the adoption of abnormal tumour tissue shapes are unknown. Here we show in the pancreas of mice that the morphology of epithelial tumours is determined by the interplay of cytoskeletal changes in transformed cells and the existing tubular geometry. To analyse the morphological changes in tissue architecture during the initiation of cancer, we developed a three-dimensional whole-organ imaging technique that enables tissue analysis at single-cell resolution. Oncogenic transformation of pancreatic ducts led to two types of neoplastic growth: exophytic lesions that expanded outwards from the duct and endophytic lesions that grew inwards to the ductal lumen. Myosin activity was higher apically than basally in wild-type cells, but upon transformation this gradient was lost in both lesion types. Three-dimensional vertex model simulations and a continuum theory of epithelial mechanics, which incorporate the cytoskeletal changes observed in transformed cells, indicated that the diameter of the source epithelium instructs the morphology of growing tumours. Three-dimensional imaging revealed that-consistent with theory predictions-small pancreatic ducts produced exophytic growth, whereas large ducts deformed endophytically. Similar patterns of lesion growth were observed in tubular epithelia of the liver and lung; this finding identifies tension imbalance and tissue curvature as fundamental determinants of epithelial tumorigenesis.


Subject(s)
Biomechanical Phenomena , Cell Polarity , Cell Transformation, Neoplastic , Morphogenesis , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Animals , Humans , Mice , Organoids/pathology , Stress, Mechanical
6.
Hum Mol Genet ; 31(8): 1242-1262, 2022 04 22.
Article in English | MEDLINE | ID: mdl-34718572

ABSTRACT

The regeneration-associated gene (RAG) expression program is activated in injured peripheral neurons after axotomy and enables long-distance axon re-growth. Over 1000 genes are regulated, and many transcription factors are upregulated or activated as part of this response. However, a detailed picture of how RAG expression is regulated is lacking. In particular, the transcriptional targets and specific functions of the various transcription factors are unclear. Jun was the first-regeneration-associated transcription factor identified and the first shown to be functionally important. Here we fully define the role of Jun in the RAG expression program in regenerating facial motor neurons. At 1, 4 and 14 days after axotomy, Jun upregulates 11, 23 and 44% of the RAG program, respectively. Jun functions relevant to regeneration include cytoskeleton production, metabolic functions and cell activation, and the downregulation of neurotransmission machinery. In silico analysis of promoter regions of Jun targets identifies stronger over-representation of AP1-like sites than CRE-like sites, although CRE sites were also over-represented in regions flanking AP1 sites. Strikingly, in motor neurons lacking Jun, an alternative SRF-dependent gene expression program is initiated after axotomy. The promoters of these newly expressed genes exhibit over-representation of CRE sites in regions near to SRF target sites. This alternative gene expression program includes plasticity-associated transcription factors and leads to an aberrant early increase in synapse density on motor neurons. Jun thus has the important function in the early phase after axotomy of pushing the injured neuron away from a plasticity response and towards a regenerative phenotype.


Subject(s)
Axons , Nerve Regeneration , Axons/metabolism , Axotomy , Motor Neurons/metabolism , Nerve Regeneration/genetics , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Biophys J ; 122(9): 1586-1599, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37002604

ABSTRACT

Segmenting cells within cellular aggregates in 3D is a growing challenge in cell biology due to improvements in capacity and accuracy of microscopy techniques. Here, we describe a pipeline to segment images of cell aggregates in 3D. The pipeline combines neural network segmentations with active meshes. We apply our segmentation method to cultured mouse mammary gland organoids imaged over 24 h with oblique plane microscopy, a high-throughput light-sheet fluorescence microscopy technique. We show that our method can also be applied to images of mouse embryonic stem cells imaged with a spinning disc microscope. We segment individual cells based on nuclei and cell membrane fluorescent markers, and track cells over time. We describe metrics to quantify the quality of the automated segmentation. Our segmentation pipeline involves a Fiji plugin that implements active mesh deformation and allows a user to create training data, automatically obtain segmentation meshes from original image data or neural network prediction, and manually curate segmentation data to identify and correct mistakes. Our active meshes-based approach facilitates segmentation postprocessing, correction, and integration with neural network prediction.


Subject(s)
Cell Nucleus , Neural Networks, Computer , Animals , Mice , Microscopy, Fluorescence/methods , Image Processing, Computer-Assisted/methods
8.
Cell Mol Life Sci ; 79(3): 135, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35179655

ABSTRACT

Oxaliplatin is the first-line regime for advanced gastric cancer treatment, while its resistance is a major problem that leads to the failure of clinical treatments. Tumor cell heterogeneity has been considered as one of the main causes for drug resistance in cancer. In this study, the mechanism of oxaliplatin resistance was investigated through in vitro human gastric cancer organoids and gastric cancer oxaliplatin-resistant cell lines and in vivo subcutaneous tumorigenicity experiments. The in vitro and in vivo results indicated that CD133+ stem cell-like cells are the main subpopulation and PARP1 is the central gene mediating oxaliplatin resistance in gastric cancer. It was found that PARP1 can effectively repair DNA damage caused by oxaliplatin by means of mediating the opening of base excision repair pathway, leading to the occurrence of drug resistance. The CD133+ stem cells also exhibited upregulated expression of N6-methyladenosine (m6A) mRNA and its writer METTL3 as showed by immunoprecipitation followed by sequencing and transcriptome analysis. METTTL3 enhances the stability of PARP1 by recruiting YTHDF1 to target the 3'-untranslated Region (3'-UTR) of PARP1 mRNA. The CD133+ tumor stem cells can regulate the stability and expression of m6A to PARP1 through METTL3, and thus exerting the PARP1-mediated DNA damage repair ability. Therefore, our study demonstrated that m6A Methyltransferase METTL3 facilitates oxaliplatin resistance in CD133+ gastric cancer stem cells by Promoting PARP1 mRNA stability which increases base excision repair pathway activity.


Subject(s)
Drug Resistance, Neoplasm , Methyltransferases/metabolism , Neoplastic Stem Cells/pathology , Oxaliplatin/pharmacology , Poly (ADP-Ribose) Polymerase-1/genetics , RNA Stability , Stomach Neoplasms/drug therapy , AC133 Antigen , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Child , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Methyltransferases/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/drug effects , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly (ADP-Ribose) Polymerase-1/metabolism , Prognosis , RNA, Messenger , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Development ; 146(20)2019 10 21.
Article in English | MEDLINE | ID: mdl-31533924

ABSTRACT

WDR62 is the second most common genetic alteration associated with microcephaly. It has been shown that Wdr62 is required for germ cell meiosis initiation in mice, and the majority of male germ cells are lost in the meiotic defect of first wave spermatogenesis in Wdr62 mutants. Strikingly, in this study, we found that the initiation of meiosis following spermatogenesis was not affected and the germ cells were gradually repopulated at later developmental stages. However, most germ cells were arrested at metaphase of meiosis I and no mature sperm were detected in epididymides. Further, this study demonstrated that metaphase I arrest of Wdr62-deficient spermatocytes was caused by asymmetric distribution of the centrosome and aberrant spindle assembly. Also, mechanistic studies demonstrated that WDR62 interacts with centrosome-associated protein CEP170, and deletion of Wdr62 causes downregulation of the CEP170 protein, which in turn leads to the aberrant spindle assembly. In summary, this study indicates that the meiosis of first wave spermatogenesis and the following spermatogenesis started from spermatogonium is probably regulated by different mechanisms. We also demonstrated a new function of WDR62 in germ cell meiosis, through its interaction with CEP170.


Subject(s)
Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Cell Cycle Proteins/genetics , Centrosome/metabolism , Male , Meiosis/genetics , Meiosis/physiology , Metaphase/genetics , Metaphase/physiology , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Binding , Spermatocytes/cytology , Spermatocytes/metabolism , Spermatogenesis/genetics , Spermatogenesis/physiology
11.
PLoS Biol ; 16(12): e2006613, 2018 12.
Article in English | MEDLINE | ID: mdl-30566428

ABSTRACT

Mutations of WD repeat domain 62 (WDR62) lead to autosomal recessive primary microcephaly (MCPH), and down-regulation of WDR62 expression causes the loss of neural progenitor cells (NPCs). However, how WDR62 is regulated and hence controls neurogenesis and brain size remains elusive. Here, we demonstrate that mitogen-activated protein kinase kinase kinase 3 (MEKK3) forms a complex with WDR62 to promote c-Jun N-terminal kinase (JNK) signaling synergistically in the control of neurogenesis. The deletion of Mekk3, Wdr62, or Jnk1 resulted in phenocopied defects, including premature NPC differentiation. We further showed that WDR62 protein is positively regulated by MEKK3 and JNK1 in the developing brain and that the defects of wdr62 deficiency can be rescued by the transgenic expression of JNK1. Meanwhile, WDR62 is also negatively regulated by T1053 phosphorylation, leading to the recruitment of F-box and WD repeat domain-containing protein 7 (FBW7) and proteasomal degradation. Our findings demonstrate that the coordinated reciprocal and bidirectional regulation among MEKK3, FBW7, WDR62, and JNK1, is required for fine-tuned JNK signaling for the control of balanced NPC self-renewal and differentiation during cortical development.


Subject(s)
Cell Cycle Proteins/metabolism , F-Box-WD Repeat-Containing Protein 7/physiology , MAP Kinase Kinase Kinase 3/physiology , Microtubule-Associated Proteins/metabolism , Animals , Cell Differentiation , F-Box-WD Repeat-Containing Protein 7/genetics , Female , HEK293 Cells , Humans , MAP Kinase Kinase Kinase 3/genetics , MAP Kinase Signaling System , Male , Mice , Mice, Knockout , Mice, Transgenic , Microcephaly/genetics , Microcephaly/physiopathology , Mitogen-Activated Protein Kinase 8/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Neurogenesis/physiology , Phosphorylation , Protein Binding , Rats , Rats, Sprague-Dawley , Signal Transduction
12.
PLoS Genet ; 14(8): e1007463, 2018 08.
Article in English | MEDLINE | ID: mdl-30102701

ABSTRACT

Meiosis is a germ cell-specific division that is indispensable for the generation of haploid gametes. However, the regulatory mechanisms of meiotic initiation remain elusive. Here, we report that the Wdr62 (WD40-repeat protein 62) is involved in meiotic initiation as a permissive factor rather than an instructive factor. Knock-out of this gene in a mouse model resulted in female meiotic initiation defects. Further studies demonstrated that Wdr62 is required for RA-induced Stra8 expression via the activation of JNK signaling, and the defects in meiotic initiation from Wdr62-deficient female mice could be partially rescued by JNK1 overexpression in germ cells. More importantly, two novel mutations of the WDR62 gene were detected in patients with premature ovarian insufficiency (POI), and these mutations played dominant-negative roles in regulating Stra8 expression. Hence, this study revealed that Wdr62 is involved in female meiotic initiation via activating JNK signaling, which displays a novel mechanism for regulating meiotic initiation, and mutation of WDR62 is one of the potential etiologies of POI in humans.


Subject(s)
Cell Cycle Proteins/genetics , MAP Kinase Signaling System/genetics , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/genetics , Primary Ovarian Insufficiency/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Asian People/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Disease Models, Animal , Female , Gene Deletion , Gene Expression Regulation , Germ Cells , Haploidy , Humans , Male , Meiosis , Mice , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Primary Ovarian Insufficiency/diagnosis , Sequence Analysis, DNA , Exome Sequencing
14.
Development ; 143(10): 1674-87, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26989177

ABSTRACT

The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Homeostasis , Integrins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Signal Transduction , Skin/metabolism , Animals , Cell Cycle Proteins , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Dasatinib/pharmacology , Epithelium/drug effects , Epithelium/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation/drug effects , Homeostasis/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Neoplasms, Squamous Cell/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein Stability/drug effects , Protein Transport/drug effects , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Wound Healing/drug effects , YAP-Signaling Proteins , src-Family Kinases/metabolism
15.
Nature ; 494(7438): 492-496, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23446422

ABSTRACT

Cancer chromosomal instability (CIN) results in an increased rate of change of chromosome number and structure and generates intratumour heterogeneity. CIN is observed in most solid tumours and is associated with both poor prognosis and drug resistance. Understanding a mechanistic basis for CIN is therefore paramount. Here we find evidence for impaired replication fork progression and increased DNA replication stress in CIN(+) colorectal cancer (CRC) cells relative to CIN(-) CRC cells, with structural chromosome abnormalities precipitating chromosome missegregation in mitosis. We identify three new CIN-suppressor genes (PIGN (also known as MCD4), MEX3C (RKHD2) and ZNF516 (KIAA0222)) encoded on chromosome 18q that are subject to frequent copy number loss in CIN(+) CRC. Chromosome 18q loss was temporally associated with aneuploidy onset at the adenoma-carcinoma transition. CIN-suppressor gene silencing leads to DNA replication stress, structural chromosome abnormalities and chromosome missegregation. Supplementing cells with nucleosides, to alleviate replication-associated damage, reduces the frequency of chromosome segregation errors after CIN-suppressor gene silencing, and attenuates segregation errors and DNA damage in CIN(+) cells. These data implicate a central role for replication stress in the generation of structural and numerical CIN, which may inform new therapeutic approaches to limit intratumour heterogeneity.


Subject(s)
Chromosomal Instability/genetics , Colorectal Neoplasms/genetics , DNA Replication/genetics , Aneuploidy , Cell Line, Tumor , Chromosomal Instability/drug effects , Chromosome Segregation/drug effects , Chromosome Segregation/genetics , Chromosomes, Human, Pair 18/drug effects , Chromosomes, Human, Pair 18/genetics , Colorectal Neoplasms/pathology , DNA Copy Number Variations/genetics , DNA Damage/drug effects , DNA Damage/genetics , DNA Replication/drug effects , Gene Deletion , Gene Silencing , Genes, Tumor Suppressor , Humans , Mitosis/drug effects , Nucleosides/pharmacology , Phosphotransferases/genetics , RNA-Binding Proteins/genetics
16.
Blood ; 128(16): 2017-2021, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27581360

ABSTRACT

The ataxia telangiectasia mutated (ATM)-interacting protein ATMIN mediates noncanonical ATM signaling in response to oxidative and replicative stress conditions. Like ATM, ATMIN can function as a tumor suppressor in the hematopoietic system: deletion of Atmin under the control of CD19-Cre results in B-cell lymphomas in aging mice. ATM signaling is essential for lymphopoiesis and hematopoietic stem cell (HSC) function; however, little is known about the role of ATMIN in hematopoiesis. We thus sought to investigate whether the absence of ATMIN would affect primitive hematopoietic cells in an ATM-dependent or -independent manner. Apart from its role in B-cell development, we show that ATMIN has an ATM-independent function in the common myeloid progenitors (CMPs) by deletion of Atmin in the entire hematopoietic system using Vav-Cre. Despite the lack of lymphoma formation, ATMIN-deficient mice developed chronic leukopenia as a result of high levels of apoptosis in B cells and CMPs and induced a compensatory mechanism in which HSCs displayed enhanced cycling. Consequently, ATMIN-deficient HSCs showed impaired regeneration ability with the induction of the DNA oxidative stress response, especially when aged. ATMIN, therefore, has multiple roles in different cell types, and its absence results in perturbed hematopoiesis, especially during stress conditions and aging.


Subject(s)
Aging , Apoptosis/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells , Oxidative Stress/genetics , Transcription Factors , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Chronic Disease , Gene Deletion , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Leukopenia/genetics , Leukopenia/metabolism , Leukopenia/pathology , Mice , Mice, Knockout , Transcription Factors/genetics , Transcription Factors/metabolism
17.
PLoS Genet ; 11(11): e1005645, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26544571

ABSTRACT

Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.


Subject(s)
Cell Cycle Proteins/physiology , DNA Repair , Lymphocyte Activation/physiology , Nuclear Proteins/physiology , T-Lymphocytes/immunology , Transcription Factors/physiology , Animals , Colitis/immunology , DNA Damage , DNA-Binding Proteins , Immunophenotyping , Mice , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Recombination, Genetic , Spleen/cytology , Spleen/metabolism
18.
Semin Cancer Biol ; 36: 52-61, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26410034

ABSTRACT

Fbw7 is well characterised as a stem cell regulator and tumour suppressor, powerfully positioned to control proliferation, differentiation and apoptosis by targeting key transcription factors for ubiquitination and destruction. Evidence in support of these roles continues to accumulate from in vitro studies, mouse models and human patient data. Here we summarise the latest of these findings, highlighting the tumour-suppressive role of Fbw7 in multiple tissues, and the rare circumstances where Fbw7 activity can be oncogenic. We discuss mechanisms that regulate ubiquitination by Fbw7, including ubiquitin-specific proteases such as USP28 that counteract Fbw7 activity and thereby stabilise oncoproteins. Deubiquitination of key Fbw7 substrates to prevent their destruction is beginning to be appreciated as an important pro-tumourigenic mechanism. As the ubiquitin-proteasome system represents a largely untapped field for drug development, the interplay between Fbw7 and its counterpart deubiquitinating enzymes in tumours is likely to attract increasing interest and influence future treatment strategies.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Stem Cells/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis , Cell Cycle Proteins/antagonists & inhibitors , Cell Differentiation/genetics , Cell Proliferation , F-Box Proteins/antagonists & inhibitors , F-Box-WD Repeat-Containing Protein 7 , Humans , Neoplasms/pathology , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Signal Transduction , Stem Cells/cytology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitination
20.
EMBO J ; 32(11): 1556-67, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23624934

ABSTRACT

c-Jun, the major component of the AP-1 transcription factor complex, has important functions in cellular proliferation and oncogenic transformation. The RING domain-containing protein RACO-1 functions as a c-Jun coactivator that molecularly links growth factor signalling to AP-1 transactivation. Here we demonstrate that RACO-1 is present as a nuclear dimer and that c-Jun specifically interacts with dimeric RACO-1. Moreover, RACO-1 is identified as a substrate of the arginine methyltransferase PRMT1, which methylates RACO-1 on two arginine residues. Arginine methylation of RACO-1 promotes a conformational change that stabilises RACO-1 by facilitating K63-linked ubiquitin chain formation, and enables RACO-1 dimerisation and c-Jun interaction. Abrogation of PRMT1 function impairs AP-1 activity and results in decreased expression of a large percentage of c-Jun target genes. These results demonstrate that arginine methylation of RACO-1 is required for efficient transcriptional activation by c-Jun/AP-1 and thus identify PRMT1 as an important regulator of c-Jun/AP-1 function.


Subject(s)
Arginine/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Transcription Factor AP-1/metabolism , Transcriptional Activation , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Nucleus/metabolism , Cell Proliferation , Cell Transformation, Neoplastic , Dimerization , HEK293 Cells , Humans , Methylation , Promoter Regions, Genetic/genetics , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-jun/genetics , Rabbits , Signal Transduction , Trans-Activators/genetics , Transcription Factor AP-1/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL