Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Carbohydr Polym ; 321: 121253, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37739490

ABSTRACT

Plant fibres are increasingly used as reinforcements, especially in thermoplastic composites. Understanding the impact of temperature on the properties of these fibres is an important issue for the manufacturing of high-performance materials with minimal defects. In this work, the structural evolution and mechanical behaviour of flax fibre cell walls were dynamically monitored by temperature-controlled X-ray diffraction and nanoindentation from 25 to 230 °C; detailed biochemical analysis was also conducted on fibre samples after each heating step. With increasing temperature up to 230 °C, a decrease in the local mechanical performance of the flax cell walls, of about -72 % for the indentation modulus and -35 % for the hardness, was measured. This was associated with a decrease in the packing of the cellulose crystal lattice (increase in d-spacing d200), as well as significant mass losses measured by thermogravimetric analysis and changes in the biochemical composition, i.e. non-cellulosic polysaccharides attributed to the middle lamellae but also to the cell walls. This work, which proposes for the first time an in-situ investigation of the dynamic temperature evolution of the flax cell wall properties, highlights the reversible behaviour of their crystalline structure (i.e. cellulose) and local mechanical properties after cooling to room temperature, even after exposure to high temperatures.


Subject(s)
Flax , Hot Temperature , Bandages , Cell Wall , Cellulose
2.
J Nanosci Nanotechnol ; 10(5): 2972-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20358887

ABSTRACT

The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.

3.
Biofouling ; 24(4): 291-302, 2008.
Article in English | MEDLINE | ID: mdl-18568667

ABSTRACT

This article reports on the preparation and partial characterisation of silicone-based coatings filled with low levels of either synthetic multiwall carbon nanotubes (MWCNTs) or natural sepiolite (NS). The antifouling and fouling-release properties of these coatings were explored through laboratory assays involving representative soft-fouling (Ulva) and hard-fouling (Balanus) organisms. The bulk mechanical properties of the coatings appeared unchanged by the addition of low amounts of filler, in contrast to the surface properties, which were modified on exposure to water. The release of Ulva sporelings (young plants) was improved by the addition of low amounts of both NS and MWCNTs. The most profound effect recorded was the significant reduction of adhesion strength of adult barnacles growing on a silicone elastomer containing a small amount (0.05%) of MWCNTs. All the data indicate that independent of the bulk properties, the surface properties affect settlement, and more particularly, the fouling-release behaviour, of the filled materials.


Subject(s)
Magnesium Silicates/chemistry , Nanotubes, Carbon/chemistry , Silicones/chemistry , Adhesiveness , Animals , Behavior, Animal , Biofilms , Materials Testing , Spores , Thoracica/physiology , Ulva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL