Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Ther ; 31(8): 2326-2341, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37376733

ABSTRACT

Human germline gene correction by targeted nucleases holds great promise for reducing mutation transmission. However, recent studies have reported concerning observations in CRISPR-Cas9-targeted human embryos, including mosaicism and loss of heterozygosity (LOH). The latter has been associated with either gene conversion or (partial) chromosome loss events. In this study, we aimed to correct a heterozygous basepair substitution in PLCZ1, related to infertility. In 36% of the targeted embryos that originated from mutant sperm, only wild-type alleles were observed. By performing genome-wide double-digest restriction site-associated DNA sequencing, integrity of the targeted chromosome (i.e., no deletions larger than 3 Mb or chromosome loss) was confirmed in all seven targeted GENType-analyzed embryos (mutant editing and absence of mutation), while short-range LOH events (shorter than 10 Mb) were clearly observed by single-nucleotide polymorphism assessment in two of these embryos. These results fuel the currently ongoing discussion on double-strand break repair in early human embryos, making a case for the occurrence of gene conversion events or partial template-based homology-directed repair.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Male , Gene Editing/methods , Semen , Mutation , Alleles , Chromosomes
2.
J Assist Reprod Genet ; 39(3): 609-618, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35064435

ABSTRACT

PURPOSE: Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization. METHODS: Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2-3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST. RESULTS: For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2-3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population. CONCLUSION: Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.


Subject(s)
Infertility , Mitochondrial Diseases , DNA, Mitochondrial/genetics , Fertilization , Fertilization in Vitro/methods , Humans , Infertility/genetics , Infertility/therapy , Oocytes , Sperm Injections, Intracytoplasmic
3.
Biofabrication ; 13(4)2021 09 21.
Article in English | MEDLINE | ID: mdl-34496350

ABSTRACT

To engineer tissues with clinically relevant dimensions by three-dimensional bioprinting, an extended vascular network with diameters ranging from the macro- to micro-scale needs to be integrated. Extrusion-based bioprinting is the most commonly applied bioprinting technique but due to the limited resolution of conventional bioprinters, the establishment of a microvascular network for the transfer of oxygen, nutrients and metabolic waste products remains challenging. To answer this need, this study assessed the potential and processability of spheroids, containing a capillary-like network, to be used as micron-sized prevascularized units for incorporation throughout the bioprinted construct. Prevascularized spheroids were generated by combining endothelial cells with fibroblasts and adipose tissue-derived mesenchymal stem cells as supporting cells. To serve as a viscous medium for the bioink-based deposition by extrusion printing, spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) and Irgacure 2959. The influence of gelMA encapsulation, the printing process and photo-crosslinking conditions on spheroid viability, proliferation and vascularization were analyzed by live/dead staining, immunohistochemistry, gene expression analysis and sprouting analysis. Stable spheroid-laden constructs, allowing spheroid outgrowth, were achieved by applying 10 min UV-A photo-curing (365 nm, 4 mW cm-2), while the construct was incubated in an additional Irgacure 2959 immersion solution. Following implantationin ovoonto a chick chorioallantoic membrane, the prevascular engineered constructs showed anastomosis with the host vasculature. This study demonstrated (a) the potential of triculture prevascularized spheroids for application as multicellular building blocks, (b) the processability of the spheroid-laden gelMA bioink by extrusion bioprinting and (c) the importance of photo-crosslinking parameters post printing, as prolonged photo-curing intervals showed to be detrimental for the angiogenic potential and complete vascularization of the construct post printing.


Subject(s)
Bioprinting , Endothelial Cells , Gelatin , Microvessels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL