Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biochem Biophys Res Commun ; 451(3): 425-30, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25110147

ABSTRACT

Here we sought evidence for the existence of insulin mRNA-producing cells outside the human pancreas. Commercially available complementary DNA (cDNA) arrays prepared from 72 different types of adult human tissues were screened by PCR for transcripts encoding insulin, and other classic pancreatic hormones. Insulin mRNA transcripts were detected by standard PCR in the pancreas, stomach, pylorus region of the stomach, and the duodenum; and additionally by nested PCR in the jejunum, ileum and cecum, but not in other body tissues including the brain and colon. Most of these tissues also variably expressed mRNA transcripts for amylase α2B, amylin, glucagon, somatostatin, and pancreatic polypeptide. In summary, using sensitive PCR methods we have provided evidence for the presence of rare insulin mRNA-expressing cells within the stomach, small intestine, and cecum. Their role at these sites may be to support classical enteroendocrine cells as sentinels to sense and monitor gastric contents passing into and through the bowel.


Subject(s)
Insulin/genetics , RNA, Messenger/analysis , Adult , Cecum/metabolism , Gastric Mucosa/metabolism , Humans , Intestine, Small/metabolism , Pancreas/metabolism , Tissue Array Analysis , Tissue Distribution
2.
Mol Cancer ; 12: 58, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23758947

ABSTRACT

BACKGROUND: The nitro-chloromethylbenzindoline prodrug nitro-CBI-DEI appears a promising candidate for the anti-cancer strategy gene-directed enzyme prodrug therapy, based on its ability to be converted to a highly cytotoxic cell-permeable derivative by the nitroreductase NfsB from Escherichia coli. However, relative to some other nitroaromatic prodrugs, nitro-CBI-DEI is a poor substrate for E. coli NfsB. To address this limitation we evaluated other nitroreductase candidates from E. coli and Pseudomonas aeruginosa. FINDINGS: Initial screens of candidate genes in the E. coli reporter strain SOS-R2 identified two additional nitroreductases, E. coli NfsA and P. aeruginosa NfsB, as being more effective activators of nitro-CBI-DEI than E. coli NfsB. In monolayer cytotoxicity assays, human colon carcinoma (HCT-116) cells transfected with P. aeruginosa NfsB were >4.5-fold more sensitive to nitro-CBI-DEI than cells expressing either E. coli enzyme, and 23.5-fold more sensitive than untransfected HCT-116. In three dimensional mixed cell cultures, not only were the P. aeruginosa NfsB expressing cells 540-fold more sensitive to nitro-CBI-DEI than pure cultures of untransfected HCT-116, the activated drug that they generated also displayed an unprecedented local bystander effect. CONCLUSION: We posit that the discrepancy in the fold-sensitivity to nitro-CBI-DEI between the two and three dimensional cytotoxicity assays stems from loss of activated drug into the media in the monolayer cultures. This emphasises the importance of evaluating high-bystander GDEPT prodrugs in three dimensional models. The high cytotoxicity and bystander effect exhibited by the NfsB_Pa/nitro-CBI-DEI combination suggest that further preclinical development of this GDEPT pairing is warranted.


Subject(s)
Nitroreductases/metabolism , Prodrugs/metabolism , Pseudomonas aeruginosa/enzymology , Bystander Effect , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Therapy , Gene Expression , Genetic Therapy , HCT116 Cells , Humans , Inhibitory Concentration 50 , Nitroreductases/genetics , Prodrugs/pharmacology , Prodrugs/toxicity , Pseudomonas aeruginosa/genetics , Tumor Stem Cell Assay
3.
Epigenomics ; 15(7): 435-451, 2023 04.
Article in English | MEDLINE | ID: mdl-37337720

ABSTRACT

DNA methylation (DNAm)-based cell mixture deconvolution (CMD) has become a quintessential part of epigenome-wide association studies where DNAm is profiled in heterogeneous tissue types. Despite being introduced over a decade ago, detection limits, which represent the smallest fraction of a cell type in a mixed biospecimen that can be reliably detected, have yet to be determined in the context of DNAm-based CMD. Moreover, there has been little attention given to approaches for quantifying the uncertainty associated with DNAm-based CMD. Here, analytical frameworks for determining both cell-specific limits of detection and quantification of uncertainty associated with DNAm-based CMD are described. This work may contribute to improved rigor, reproducibility and replicability of epigenome-wide association studies involving CMD.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Uncertainty , Limit of Detection , Reproducibility of Results
4.
Article in English | MEDLINE | ID: mdl-35419567

ABSTRACT

Reference-based deconvolution methods use reference libraries of cell-specific DNA methylation (DNAm) measurements as a means toward deconvoluting cell proportions in heterogeneous biospecimens (e.g., whole-blood). As the accuracy of such methods depends highly on the CpG loci comprising the reference library, recent research efforts have focused on the selection of libraries to optimize deconvolution accuracy. While existing approaches for library selection work extremely well, the best performing approaches require a training data set consisting of both DNAm profiles over a heterogeneous cell population and gold-standard measurements of cell composition (e.g., flow cytometry) in the same samples. Here, we present a framework for reference library selection without a training dataset (RESET) and benchmark it against the Legacy method (minfi:pickCompProbes), where libraries are constructed based on a pre-specified number of cell-specific differentially methylated loci (DML). RESET uses a modified version of the Dispersion Separability Criteria (DSC) for comparing different libraries and has four main steps: (1) identify a candidate set of cell-specific DMLs, (2) randomly sample DMLs from the candidate set, (3) compute the Modified DSC of the selected DMLs, and (4) update the selection probabilities of DMLs based on their contribution to the Modified DSC. Steps 2-4 are repeated many times and the library with the largest Modified DSC is selected for subsequent reference-based deconvolution. We evaluated RESET using several publicly available datasets consisting of whole-blood DNAm measurements with corresponding measurements of cell composition. We computed the RMSE and R 2 between the predicted cell proportions and their measured values. RESET outperformed the Legacy approach in selecting libraries that improve the accuracy of deconvolution estimates. Additionally, reference libraries constructed using RESET resulted in cellular composition estimates that explained more variation in DNAm as compared to the Legacy approach when evaluated in the context of epigenome-wide association studies (EWAS) of several publicly available data sets. This finding has implications for the statistical power of EWAS. RESET combats potential challenges associated with existing approaches for reference library assembly and thus, may serve as a viable strategy for library construction in the absence of a training data set.

5.
Clin Epigenetics ; 14(1): 173, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522672

ABSTRACT

BACKGROUND: There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However, there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further, it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages. RESULTS: We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell, CD4 T, and CD8 T naïve and memory cells states. In the process of naïve to memory activation across the three lineages, we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further, in central to effector memory differentiation, our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally, we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes. CONCLUSIONS: Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Immunologic Memory/genetics , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , CD4-Positive T-Lymphocytes/metabolism
6.
Front Bioinform ; 2: 893032, 2022.
Article in English | MEDLINE | ID: mdl-36304274

ABSTRACT

Background: It is important to identify when two exposures impact a molecular marker (e.g., a gene's expression) in similar ways, for example, to learn that a new drug has a similar effect to an existing drug. Currently, statistically robust approaches for making comparisons of equivalence of effect sizes obtained from two independently run treatment vs. control comparisons have not been developed. Results: Here, we propose two approaches for evaluating the question of equivalence between effect sizes of two independent studies: a bootstrap test of the Equivalent Change Index (ECI), which we previously developed, and performing Two One-Sided t-Tests (TOST) on the difference in log-fold changes directly. The ECI of a gene is computed by taking the ratio of the effect size estimates obtained from the two different studies, weighted by the maximum of the two p-values and giving it a sign indicating if the effects are in the same or opposite directions, whereas TOST is a test of whether the difference in log-fold changes lies outside a region of equivalence. We used a series of simulation studies to compare the two tests on the basis of sensitivity, specificity, balanced accuracy, and F1-score. We found that TOST is not efficient for identifying equivalently changed gene expression values (F1-score = 0) because it is too conservative, while the ECI bootstrap test shows good performance (F1-score = 0.95). Furthermore, applying the ECI bootstrap test and TOST to publicly available microarray expression data from pancreatic cancer showed that, while TOST was not able to identify any equivalently or inversely changed genes, the ECI bootstrap test identified genes associated with pancreatic cancer. Additionally, when investigating publicly available RNAseq data of smoking vs. vaping, no equivalently changed genes were identified by TOST, but ECI bootstrap test identified genes associated with smoking. Conclusion: A bootstrap test of the ECI is a promising new statistical approach for determining if two diverse studies show similarity in the differential expression of genes and can help to identify genes which are similarly influenced by a specific treatment or exposure. The R package for the ECI bootstrap test is available at https://github.com/Hecate08/ECIbootstrap.

7.
Kans J Med ; 13: 275-279, 2020.
Article in English | MEDLINE | ID: mdl-33312409

ABSTRACT

INTRODUCTION: The inferior glenohumeral ligament (IGHL) complex commonly is assessed by both magnetic resonance imaging (MRI) and magnetic resonance (MR) arthrogram. Our study compared the accuracy of MR arthrogram compared to MRI using arthroscopic correlation as the gold standard. METHODS: A retrospective review of cases reporting an IGHL injury was performed. Seventy-seven cases met inclusion criteria, while five had arthroscopic reports that directly confirmed or refuted the presence of IGHL injury. Two arthroscopic reports confirmed concordant IGHL injuries, while three arthroscopic reports mentioned discordant findings compared to MR. All three discordant cases involved MR arthrogram. Findings included soft tissue edema, fraying of the axillary pouch fibers, and cortical irregularity of the humeral neck. Of the two concordant cases, one was diagnosed by MRI, revealing an avulsion of the anterior band, while the second was diagnosed by MR arthrogram showing ill-defined anterior band fibers. Many cases involved rotator cuff or labral tears, which may have been the focus of care for providers, given their importance for shoulder stability. Additionally, a lack of diagnostic confidence in MR reports may have influenced surgeons in the degree to which they assessed the IGHL complex during arthroscopy. CONCLUSION: Radiologists seemed more likely to make note of IGHL injuries when MR arthrograms were performed; meanwhile, all three discordant cases involved MR arthrogram reads. Therefore, additional larger studies are needed with arthroscopic correlation to elucidate MR findings that confidently suggest injury to the IGHL complex, to avoid false positive radiology reports.

8.
J Appl Physiol (1985) ; 128(5): 1251-1261, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32240015

ABSTRACT

Both lipid oversupply and poor mitochondrial function (low respiration and elevated H2O2 emission) have been implicated in the development of hepatic steatosis and liver injury. Mitophagy, the targeted degradation of low-functioning mitochondria, is critical for maintaining mitochondrial quality control. Here, we used intralipid injection combined with acute (4 day) and chronic (4-7wk) high-fat diets (HFD) to examine whether hepatic mitochondrial respiration would decrease and H2O2 emission would increase with lipid overload. We tested these effects in male and female wild type (WT) mice and mice null for a critical mediator of mitophagy, BCL-2/adenovirus EIB 19-kDa interacting protein knockout (BNIP3 KO) housed at thermoneutral temperatures. Intralipid injection was successful in elevating serum triglycerides and nonesterified fatty acids but had no impact on hepatic mitochondrial respiratory function or H2O2 emission. However, female mice had greater mitochondrial respiration on the acute HFD and lower H2O2 emission across both HFD durations and were protected against hepatic steatosis. Unexpectedly, BNIP3 KO animals had greater hepatic mitochondrial respiration, better coupled respiration, and increased electron chain protein content after the 4-day HFD, compared with WT animals. Altogether, these data suggest that acute lipid overload delivered by a single intralipid bolus does not alter hepatic mitochondrial outcomes, but rather sex and genotype profoundly impact hepatic mitochondrial respiration and H2O2 emission.NEW & NOTEWORTHY This is the first study focusing on hepatic mitochondrial respiratory outcomes in response to lipid overload via a high-fat diet (HFD) combined with intralipid injection. Novel findings include no effect of intralipid injection on mitochondrial outcomes of interest despite increased circulating lipid concentrations. However, we report pronounced differences in hepatic mitochondrial respiration, complex protein expression, and H2O2 production by sex and BCL-2/adenovirus EIB 19-kDa interacting protein (BNIP3) genotype. Specifically, female mice had lower H2O2 emission globally and on an acute HFD, females had greater hepatic mitochondrial respiration than males while BNIP3 knockout (KO) animals had greater mitochondrial coupling and complex protein expression than wild-type (WT) animals.


Subject(s)
Fatty Liver , Hydrogen Peroxide , Membrane Proteins , Mitochondrial Proteins , Sex Factors , Animals , Diet, High-Fat , Female , Genotype , Hydrogen Peroxide/metabolism , Lipids , Liver/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
9.
Vaccines (Basel) ; 8(4)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050053

ABSTRACT

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the pressing contemporary public health challenges. Investigations into the genomic structure of SARS-CoV-2 may inform ongoing vaccine development efforts and/or provide insights into vaccine efficacy to fight against COVID-19. Evolutionary analysis of 540 genomes spanning 20 different countries/territories was conducted and revealed an increase in the genomic divergence across successive generations. The ancestor of the phylogeny was found to be the isolate from the 2019/2020 Wuhan outbreak. Its transmission was outlined across 20 countries/territories as per genomic similarity. Our results demonstrate faster evolving variations in the genomic structure of SARS-CoV-2 when compared to the isolates from early stages of the pandemic. Genomic alterations were predominantly located and mapped onto the reported vaccine candidates of structural genes, which are the main targets for vaccine candidates. S protein showed 34, N protein 25, E protein 2, and M protein 3 amino acid variations in 246 genomes among 540. Among identified mutations, 23 in S protein, 1 in E, 2 from M, and 7 from N protein were mapped with the reported vaccine candidates explaining the possible implications on universal vaccines. Hence, potential target regions for vaccines would be ideally chosen from the structural regions of the genome that lack high variation. The increasing variations in the genome of SARS-CoV-2 together with our observations in structural genes have important implications for the efficacy of a successful universal vaccine against SARS-CoV-2.

10.
Am J Physiol Heart Circ Physiol ; 297(5): H1914-22, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19767525

ABSTRACT

Pyruvate-fortified cardioplegia protects myocardium and hastens postsurgical recovery of patients undergoing cardiopulmonary bypass (CPB). Pyruvate reportedly suppresses degradation of the alpha-subunit of hypoxia-inducible factor-1 (HIF-1), an activator of the gene encoding the cardioprotective cytokine erythropoietin (EPO). This study tested the hypothesis that pyruvate-enriched cardioplegia evoked EPO expression and mobilized EPO signaling mechanisms in myocardium. Hearts of pigs maintained on CPB were arrested for 60 min with 4:1 blood-crystalloid cardioplegia. The crystalloid component contained 188 mM glucose + or - 24 mM pyruvate. After 30-min cardiac reperfusion with cardioplegia-free blood, the pigs were weaned from CPB. Left ventricular myocardium was sampled 4 h after CPB for immunoblot assessment of HIF-1alpha, EPO and its receptor, the signaling kinases Akt and ERK, and endothelial nitric oxide synthase (eNOS), an effector of EPO signaling. Pyruvate-fortified cardioplegia stabilized arterial pressure post-CPB, induced myocardial EPO mRNA expression, and increased HIF-1alpha, EPO, and EPO-R protein contents by 60, 58, and 123%, respectively, vs. control cardioplegia (P < 0.05). Pyruvate cardioplegia also increased ERK phosphorylation by 61 and 118%, respectively, vs. control cardioplegia-treated and non-CPB sham myocardium (P < 0.01), but did not alter Akt phosphorylation. Nitric oxide synthase (NOS) activity and eNOS content fell 32% following control CPB vs. sham, but pyruvate cardioplegia prevented these declines, yielding 49 and 80% greater NOS activity and eNOS content vs. respective control values (P < 0.01). Pyruvate-fortified cardioplegia induced myocardial EPO expression and mobilized the EPO-ERK-eNOS mechanism. By stabilizing HIF-1alpha, pyruvate-fortified cardioplegia may evoke sustained activation of EPO's cardioprotective signaling cascade in myocardium.


Subject(s)
Cardioplegic Solutions/pharmacology , Cardiopulmonary Bypass , Erythropoietin/metabolism , Heart Arrest, Induced/methods , Heart Diseases/prevention & control , Myocardium/metabolism , Pyruvic Acid/pharmacology , Signal Transduction/drug effects , Animals , Blood Pressure/drug effects , Cardioplegic Solutions/metabolism , Cardiopulmonary Bypass/adverse effects , Edema, Cardiac/etiology , Edema, Cardiac/metabolism , Edema, Cardiac/prevention & control , Energy Metabolism , Erythropoietin/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glutathione/metabolism , Heart Arrest, Induced/adverse effects , Heart Diseases/etiology , Heart Diseases/metabolism , Heart Diseases/physiopathology , Heart Rate/drug effects , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Models, Animal , Nitric Oxide Synthase Type III/metabolism , Oxidation-Reduction , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Pyruvic Acid/metabolism , RNA, Messenger/metabolism , Receptors, Erythropoietin/metabolism , Swine , Time Factors , Up-Regulation
11.
PLoS One ; 13(7): e0201464, 2018.
Article in English | MEDLINE | ID: mdl-30059522

ABSTRACT

Messenger RNA (mRNA) transfection is a developing field that has applications in research and gene therapy. Potentially, mRNA transfection can be mediated efficiently by cell-penetrating peptides (CPPs) as they may be modified to target specific tissues. However, whilst CPPs are well-documented to transfect oligonucleotides and plasmids, mRNA transfection by CPPs has barely been explored. Here we report that peptides, including a truncated form of protamine and the same peptide fused to the CPP Xentry (Xentry-protamine; XP), can transfect mRNAs encoding reporter genes into human cells. Further, this transfection is enhanced by the anti-malarial chloroquine (CQ) and the toll-like receptor antagonist E6446 (6-[3-(pyrrolidin-1-yl)propoxy)-2-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl]benzo[d]oxazole), with E6446 being >5-fold more potent than CQ at enhancing this transfection. Finally, E6446 facilitated the transfection by XP of mRNA encoding the cystic fibrosis transmembrane regulator, the protein mutated in cystic fibrosis. As such, these findings introduce E6446 as a novel transfection enhancer and may be of practical relevance to researchers seeking to improve the mRNA transfection efficiency of their preferred CPP.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Protamines/pharmacology , RNA, Messenger/pharmacology , Toll-Like Receptors/antagonists & inhibitors , Transfection/methods , Cell-Penetrating Peptides/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/biosynthesis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , HEK293 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Protamines/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Med Dosim ; 34(4): 273-8, 2009.
Article in English | MEDLINE | ID: mdl-19854385

ABSTRACT

Dosimetric studies on respiratory movement suggest several advantages toward the use of 4-dimensional computed tomography (4DCT) in radiation treatment planning. 4DCT is a method to obtain a series of CT scans each representing a different respiratory phase. The use of 4DCT has provided substantial information on tumor movement in the lung, allowing for the creation of custom planning margins explicitly including respiratory motion. These custom motion margins may result in an increase in the amount of normal lung in the field; however, it is believed less normal lung is irradiated than if generic motion margins were used. Clinical data regarding dose to normal lung by using 4DCT remain rather limited. Thus, a study presenting figures on the change in normal lung dose between planned free breathing CT and 4DCT cases would be useful to the dosimetry community. We have generated plans comparing fast spiral CT and 4DCT in regard to tumor coverage and the resulting dose to normal lung for the clinical target volume (CTV) and planning target volume (PTV) expansions used at our institution. These data were analyzed for free breathing and 4D plans of 6 lung cancer patients using intensity modulated radiation therapy (IMRT). We compared doses to normal lung tissue between free breathing and 4DCT plans.


Subject(s)
Body Burden , Four-Dimensional Computed Tomography/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung/diagnostic imaging , Radiation Protection/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Lung/radiation effects , Radiation Injuries/prevention & control , Radiometry/methods , Radiotherapy Dosage , Relative Biological Effectiveness
SELECTION OF CITATIONS
SEARCH DETAIL