Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Nano ; 18(25): 16199-16207, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860922

ABSTRACT

Biological signaling correlates with the interrelation between ion and nanofluidic transportation pathways. However, artificial embodies with reconfigurable ion-fluid transport interaction aspects remain largely elusive. Herein, we unveiled an intimate interplay between nanopore-driven advancing flow and ion carriage for the spontaneous imbibition of aqueous solutions at the nanoporous thin film level. Ionic factors dominate transport phenomena processing and integration (ions influence fluid motion, which in turn governs the self-regulated ion traveling). We show an ion-induced translation effect that finely converts a chemical input, the nature of ions, into a related fluidic output: modulation of the extent of imbibition. We further find complex imbibition dynamics induced by the ion type and population. We peculiarly pinpoint a stop-and-go effective transport process with a programmable delay time triggered by selective guest-host interactions. The ion-fluid transport interplay is captured by a simple model that considers the counterbalance between the capillary infiltration and solution concentration, owing to water loss at the nanoporous film-air interface. Our results demonstrate that nanopore networks present fresh scenarios for understanding and controlling autonomous macroscopic liquid locomotion and offer a distinctive working principle for smart ion operation.

2.
Antibiotics (Basel) ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36671217

ABSTRACT

UV-irradiation method has grown as an alternative approach to in situ synthetize silver nanoparticles (AgNPs) for avoiding the use of toxic reducing agents. In this work, an antimicrobial material by in situ synthesizing AgNPs within 3D-printed collagen-based scaffolds (Col-Ag) was developed. By modifying the concentration of AgNO3 (0.05 and 0.1 M) and UV irradiation time (2 h, 4 h, and 6 h), the morphology and size of the in situ prepared AgNPs could be controlled. As a result, star-like silver particles of around 23 ± 4 µm and spherical AgNPs of 220 ± 42 nm were obtained for Ag 0.05 M, while for Ag 0.1 M cubic particles from 0.3 to 1.0 µm and round silver precipitates of 3.0 ± 0.4 µm were formed in the surface of the scaffolds at different UV irradiation times. However, inside the material AgNPs of 10-28 nm were obtained. The DSC thermal analysis showed that a higher concentration of Ag stabilizes the 3D-printed collagen-based scaffolds, while a longer UV irradiation interval produces a decrease in the denaturation temperature of collagen. The enzymatic degradation assay also revealed that the in situ formed AgNPs act as stabilizing and reinforcement agent which also improve the swelling capacity of collagen-based material. Finally, antimicrobial activity of Col-Ag was studied, showing high bactericidal efficiency against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. These results showed that the UV irradiation method was really attractive to modulate the size and shape of in situ synthesized AgNPs to develop antimicrobial 3D-printed collagen scaffolds with different thermal, swelling and degradation properties.

3.
ACS Nano ; 14(3): 2702-2708, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-31927978

ABSTRACT

The evaporation of water droplets on surfaces is a ubiquitous phenomenon in nature and has critical importance in a broad range of technical applications. Here, we show a substantial enhancement of liquid evaporation rate when droplets are on nanoporous thin film surfaces. We also reveal how this nanopore-enhanced evaporation leads to counterintuitive phenomena: cooler or more saline water droplets evaporate faster. We find indeed that, contrary to typical evaporation behavior of sessile droplets on nonporous surfaces, the droplets placed on nanoporous thin films evaporate more rapidly when salt concentration increases or when the temperature decreases. This peculiar droplet evaporation behavior is related to the key role of the steady wetted annulus that is self-generated into the nanopore network in the drop periphery, which leads to an effectively enhanced evaporation area that controls the overall evaporation process. Our results provide the prospect of conceiving fresh scenarios in the evaporation of drops on surfaces in both relevant applications and fundamental insights.

4.
Article in English | MEDLINE | ID: mdl-32850709

ABSTRACT

In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.

5.
ACS Omega ; 3(11): 16040-16045, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458242

ABSTRACT

The development of artificial nanosystems that mimic directional water-collecting ability of evolved biological surfaces is eagerly awaited. Here we report a new type of addressable water collection that is induced by coupling both vapor gradients, like a road drawn, and the temperature-tuned condensation in nanopores as step signals. What distinguishes the motion described here from the motions reported earlier is the fact that neither bulk liquid infiltration nor displacement of droplet is required. Instead, the motion results from a scanned water capture because of the temperature-dependent condensation command acting on the vapor pressure gradient track originated by a droplet without a bulk fluidic connection with a mesoporous film. This novel working principle demands only a small-range surface temperature control, which was entirely generated by a thermoelectric cell integrated to the mesoporous substrates. The strategy opens the route to achieving precise control over wetting location (from a few to hundreds of micrometers) and hence over the direction of water collected by these widely employed nanomaterials. Furthermore, as water is collected from condensation into the pores, the system naturally involves purification and subsequent delivery of clean water, which provides an added value to the proposed strategy.

SELECTION OF CITATIONS
SEARCH DETAIL