Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 20(7): e1012039, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950065

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. However, the routes of transmission of the virus to, and from, the mink have been unclear. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. Detailed analysis of changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants with the Y453F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early in the outbreak. However, further introductions of the virus, by variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of viral genome data, we estimate, using a conservative approach, that about 17 separate examples of mink to human transmission occurred in Denmark but up to 59 such events (90% credible interval: (39-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using Bayesian methods. Using the latter approach, 136 jumps (90% credible interval: (117-164)) from humans to mink were found, which may underlie the farm-to-farm spread. Thus, transmission of SARS-CoV-2 from humans to mink, mink to mink, from mink to humans and between humans were all observed.


Subject(s)
COVID-19 , Mink , Phylogeny , SARS-CoV-2 , Mink/virology , COVID-19/transmission , COVID-19/virology , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/genetics , Animals , Denmark/epidemiology , Humans , Pandemics , Farms , Betacoronavirus/genetics , Betacoronavirus/classification , Genome, Viral , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus Infections/transmission , Spike Glycoprotein, Coronavirus/genetics
2.
Virology ; 595: 110072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599031

ABSTRACT

Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.


Subject(s)
Genome, Viral , Phylogeny , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/classification , Europe , Swine Diseases/virology , United States , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Coronavirus/classification , Gastroenteritis, Transmissible, of Swine/virology
3.
Pathogens ; 13(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38392892

ABSTRACT

African swine fever virus (ASFV) is the causative agent of African swine fever, an economically important disease of pigs, often with a high case fatality rate. ASFV has demonstrated low genetic diversity among isolates collected within Eurasia. To explore the influence of viral variants on clinical outcomes and infection dynamics in pigs experimentally infected with ASFV, we have designed a deep sequencing strategy. The variant analysis revealed unique SNPs at <10% frequency in several infected pigs as well as some SNPs that were found in more than one pig. In addition, a deletion of 10,487 bp (resulting in the complete loss of 21 genes) was present at a nearly 100% frequency in the ASFV DNA from one pig at position 6362-16849. This deletion was also found to be present at low levels in the virus inoculum and in two other infected pigs. The current methodology can be used for the currently circulating Eurasian ASFVs and also adapted to other ASFV strains and genotypes. Comprehensive deep sequencing is critical for following ASFV molecular evolution, especially for the identification of modifications that affect virus virulence.

4.
Sci Rep ; 14(1): 19440, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169071

ABSTRACT

In 2020, Denmark buried approximately four million culled, farmed mink in mass graves treated with slaked lime due to widespread SARS-CoV-2 infections. After six months, environmental concerns prompted the exhumation of these cadavers. Our analysis encompassed visual inspections, soil pH measurements, and gas emission assessments of the grave environment. Additionally, we evaluated carcasses for decay status, cadaverine content, and the presence of various pathogens, including SARS-CoV-2 and mink coronavirus. Our findings revealed minimal microbial activity and limited carcass decomposition. Although viral RNA from SARS-CoV-2 and mink coronavirus, along with DNA from Aleutian mink disease virus, were detected, the absence of infectious SARS-CoV-2 in cell culture assays suggests slow natural degradation processes. This study provides critical insights for future considerations in managing mass burial scenarios during outbreaks of livestock-associated zoonotic pathogens.


Subject(s)
Burial , COVID-19 , Mink , SARS-CoV-2 , Animals , Mink/virology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/isolation & purification , Denmark , Pandemics , Cadaver , Humans , RNA, Viral/genetics , Coronavirus/isolation & purification , Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL