Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Article in English | MEDLINE | ID: mdl-38669190

ABSTRACT

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Subject(s)
Electrons , Organs at Risk , Printing, Three-Dimensional , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Skin , Humans , Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects , Skin/radiation effects , Phantoms, Imaging , Neoplasms/radiotherapy , Particle Accelerators/instrumentation
2.
J Appl Clin Med Phys ; 25(7): e14342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38590112

ABSTRACT

BACKGROUND: Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research. METHODS: We systematically investigated the impact of proton machine operating parameters on the effectiveness of layer rescanning in mitigating interplay effect during lung SBRT treatment, using the CIRS phantom. Focused on the Hitachi synchrotron particle therapy system, we explored machine operating parameters from our institution's current (2015) and upcoming systems (2025A and 2025B). Accumulated dynamic 4D dose were reconstructed to assess the interplay effect and layer rescanning effectiveness. RESULTS: Achieving target coverage and dose homogeneity within 2% deviation required 6, 6, and 20 times layer rescanning for the 2015, 2025A, and 2025B machine parameters, respectively. Beyond this point, further increasing the number of layer rescanning did not further improve the dose distribution. BDTs without rescanning were 50.4, 24.4, and 11.4 s for 2015, 2025A, and 2025B, respectively. However, after incorporating proper number of layer rescanning (six for 2015 and 2025A, 20 for 2025B), BDTs increased to 67.0, 39.6, and 42.3 s for 2015, 2025A, and 2025B machine parameters. Our data also demonstrated the potential problem of false negative and false positive if the randomness of the respiratory phase at which the beam is initiated is not considered in the evaluation of interplay effect. CONCLUSION: The effectiveness of layer rescanning for mitigating interplay effect is affected by machine operating parameters. Therefore, past clinical experiences may not be applicable to modern machines.


Subject(s)
Lung Neoplasms , Phantoms, Imaging , Proton Therapy , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Proton Therapy/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects
3.
J Appl Clin Med Phys ; 24(7): e14049, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37227694

ABSTRACT

BACKGROUND: In order to compute the relative biological effectiveness (RBE) of ion radiation therapy with the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM), it is necessary to process entire microdosimetric distributions. Therefore, a posteriori RBE recalculations (i.e., for a different cell line or another biological endpoint) would require whole spectral information. It is currently not practical to compute and store all this data for each clinical voxel. PURPOSE: To develop a methodology that allows to store a limited amount of physical information without losing accuracy in the RBE calculations nor the possibility of a posteriori RBE recalculations. METHODS: Computer simulations for four monoenergetic 12 C ion beams and a 12 C ion spread-out Bragg peak (SOBP) were performed to assess lineal energy distributions as a function of the depth within a water phantom. These distributions were used in combination with the MCF MKM to compute the in vitro clonogenic survival RBE for human salivary gland tumor cells (HSG cell line) and human skin fibroblasts (NB1RGB cell line). The RBE values were also calculated with a new abridged microdosimetric distribution methodology (AMDM) and compared with the reference RBE calculations using the entire distributions. RESULTS: The maximum relative deviation between the RBE values computed using the entire distributions and the AMDM was 0.61% (monoenergetic beams) and 0.49% (SOBP) for the HSG cell line, while 0.45% (monoenergetic beams) and 0.26% (SOBP) for the NB1RGB cell line. CONCLUSION: The excellent agreement between the RBE values computed using the entire lineal energy distributions and the AMDM represents a milestone for the clinical implementation of the MCF MKM.


Subject(s)
Heavy Ion Radiotherapy , Humans , Relative Biological Effectiveness , Radiotherapy Dosage , Computer Simulation , Kinetics , Carbon/therapeutic use
4.
J Appl Clin Med Phys ; 23(2): e13496, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890094

ABSTRACT

INTRODUCTION: This study presents a comprehensive collision avoidance framework based on three-dimension (3D) computer-aided design (CAD) modeling, a graphical user interface (GUI) as peripheral to the radiation treatment planning (RTP) environment, and patient-specific plan parameters for intensity-modulated proton therapy (IMPT). METHODS: A stand-alone software application was developed leveraging the Varian scripting application programming interface (API) for RTP database object accessibility. The Collision Avoider software models the Hitachi ProBeat-V half gantry design and the Kuka robotic couch with triangle mesh structures. Patient-specific plan parameters are displayed in the collision avoidance software for potential proximity evaluation. The external surfaces of the patients and the immobilization devices are contoured based on computed tomography (CT) images. A "table junction-to-CT-origin" (JCT) measurement is made for every patient at the time of CT simulation to accurately provide reference location of the patient contours to the treatment couch. Collision evaluations were performed virtually with the program during treatment planning to prevent four major types of collisional events: collisions between the gantry head and the treatment couch, gantry head and the patient's body, gantry head and the robotic arm, and collisions between the gantry head and the immobilization devices. RESULTS: The Collision Avoider software was able to accurately model the proton treatment delivery system and the robotic couch position. Commonly employed clinical beam configuration and JCT values were investigated. Brain and head and neck patients require more complex gantry and patient positioning system configurations. Physical measurements were performed to validate 3D CAD model geometry. Twelve clinical proton treatment plans were used to validate the accuracy of the software. The software can predict all four types of collisional events in our clinic since its full implementation in 2020. CONCLUSION: A highly efficient patient-specific collision prevention program for scanning proton therapy has been successfully implemented. The graphical program has provided accurate collision detection since its inception at our institution.


Subject(s)
Proton Therapy , Radiotherapy, Intensity-Modulated , Computer Simulation , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Software , Tomography, X-Ray Computed
5.
J Appl Clin Med Phys ; 23(4): e13527, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35060317

ABSTRACT

PURPOSE: To evaluate the relative biological effectiveness (RBE)-weighted dose to the heart and to estimate RBE uncertainties when assuming a constant RBE of 1.1, for breast cancer patients receiving intensity-modulated proton therapy (IMPT). Further, to study the impact of RBE uncertainties on the risk of an acute coronary event (ACE). MATERIAL AND METHODS: We analyzed 20 patients who received IMPT to either the left breast (n = 10) or left chest wall (n = 10) and regional lymph nodes. The Monte Carlo simulation engine, MCsquare, was used to simulate the dose-averaged linear energy transfer (LETd) map. The RBE-weighted dose to the heart and its substructures was calculated using three different RBE models. The risk of ACE was estimated per its linear relationship with mean heart dose (MHD) as established by Darby et al. RESULTS: The median MHD increased from 1.33 GyRBE assuming an RBE of 1.1 to 1.64, 1.87, and 1.99 GyRBE when using the RBE-weighted dose models. The median values (and ranges) of the excess absolute risk of ACE were 0.4% (0.1%-0.8%) when assuming an RBE of 1.1, and 0.6% (0.2%-1.0%), 0.6% (0.2%-1.1%), and 0.7% (0.2%-1.1%) with the RBE-weighted models. For our patient cohort, the maximum excess absolute risk of ACE increased by 0.3% with the RBE-weighted doses compared to the constant RBE of 1.1, reaching an excess absolute ACE risk of 1.1%. The interpatient LETd variation was small for the relevant high-dose regions of the heart. CONCLUSION: All three RBE models predicted a higher biological dose compared to the clinical standard dose assuming a constant RBE of 1.1. An underestimation of the biological dose results in underestimation of the ACE risk. Analyzing the voxel-by-voxel biological dose and the LET map alongside clinical outcomes is warranted in the development of a more accurate normal-tissue complication probability model.


Subject(s)
Breast Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Breast Neoplasms/radiotherapy , Female , Humans , Proton Therapy/adverse effects , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Relative Biological Effectiveness
6.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293348

ABSTRACT

The relative biological effectiveness (RBE) calculations used during the planning of ion therapy treatments are generally based on the microdosimetric kinetic model (MKM) and the local effect model (LEM). The Mayo Clinic Florida MKM (MCF MKM) was recently developed to overcome the limitations of previous MKMs in reproducing the biological data and to eliminate the need for ion-exposed in vitro data as input for the model calculations. Since we are considering to implement the MCF MKM in clinic, this article presents (a) an extensive benchmark of the MCF MKM predictions against corresponding in vitro clonogenic survival data for 4 rodent and 10 cell lines exposed to ions from 1H to 238U, and (b) a systematic comparison with published results of the latest version of the LEM (LEM IV). Additionally, we introduce a novel approach to derive an approximate value of the MCF MKM model parameters by knowing only the animal species and the mean number of chromosomes. The overall good agreement between MCF MKM predictions and in vitro data suggests the MCF MKM can be reliably used for the RBE calculations. In most cases, a reasonable agreement was found between the MCF MKM and the LEM IV.


Subject(s)
Rodentia , Animals , Humans , Florida , Relative Biological Effectiveness , Kinetics , Cell Line
7.
J Appl Clin Med Phys ; 22(7): 276-285, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34159715

ABSTRACT

The primary objective is to evaluate the potential dosimetric gains of performing functional avoidance-based proton treatment planning using 4DCT derived ventilation imaging. 4DCT data of 31 patients from a prospective functional avoidance clinical trial were evaluated with intensity modulated proton therapy (IMPT) plans and compared with clinical volumetric modulated arc therapy (VMAT) plans. Dosimetric parameters were compared between standard and functional plans with IMPT and VMAT with one-way analysis of variance and post hoc paired student t-test. Normal Tissue Complication Probability (NTCP) models were employed to estimate the risk of two toxicity endpoints for healthy lung tissues. Dose degradation due to proton motion interplay effect was evaluated. Functional IMPT plans led to significant dose reduction to functional lung structures when compared with functional VMAT without significant dose increase to Organ at Risk (OAR) structures. When interplay effect is considered, no significant dose degradation was observed for the OARs or the clinical target volume (CTV) volumes for functional IMPT. Using fV20 as the dose metric and Grade 2+ pneumonitis as toxicity endpoint, there is a mean 5.7% reduction in Grade 2+ RP with the functional IMPT and as high as 26% in reduction for individual patient when compared to the standard IMPT planning. Functional IMPT was able to spare healthy lung tissue to avoid excess dose to normal structures while maintaining satisfying target coverage. NTCP calculation also shows that the risk of pulmonary complications can be further reduced with functional based IMPT.


Subject(s)
Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Organs at Risk , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
8.
Breast Cancer Res Treat ; 181(2): 291-296, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32318954

ABSTRACT

PURPOSE: Breast cancer is the most commonly diagnosed cancer in women, with many efforts aimed at reducing acute and late toxicity given the generally favorable clinical outcomes with the current standard of care. Carbon ion radiation therapy is an emerging technique that may reduce dose to adjacent organs at risk while allowing dose escalation to the target. Given the efficacy of the standard treatments for breast cancer, there have been few prospective studies to date investigating carbon ion radiation therapy in breast cancer. METHODS: PubMed/Medline, Ebsco, Cochrane, and Scopus were systematically reviewed using the search terms "carbon ion" and "breast" in November 2019. Out of the 76 articles screened, 26 articles were included. RESULTS: This comprehensive review describes the physical and biological properties of carbon ion radiation therapy, with an emphasis on how these properties can be applied in the setting of breast cancer. Studies investigating the role of carbon ion radiation therapy in early stage breast cancers are reviewed. Additionally, the use of carbon ion radiation therapy in locally advanced disease, recurrent disease, and radiation-induced angiosarcoma are discussed. CONCLUSION: Although the data is limited, the early clinical results are promising. Further clinical trials are needed, especially in the setting of locally advanced and recurrent disease, to fully define the potential role of carbon ion radiation therapy in the treatment of breast cancer.


Subject(s)
Breast Neoplasms/radiotherapy , Heavy Ion Radiotherapy/methods , Breast Neoplasms/pathology , Female , Humans , Prognosis
9.
Acta Oncol ; 57(5): 629-636, 2018 May.
Article in English | MEDLINE | ID: mdl-29129125

ABSTRACT

PURPOSE: To demonstrate the clinical efficacy and safety of a highly conformal, supine, hybrid forward and inverse planned intensity modulated radiation therapy (IMRT) technique for photon craniospinal irradiation (CSI). METHODS: Patients who received supine, hybrid IMRT CSI from 2009 to 2014 were included in this retrospective review. Clinical target volume (CTV) was defined as intracranial contents and thecal sac, including nerve roots. Dose was prescribed such that >99% of CTV received >99% of prescription and >95% of the planning target volume received >95% of prescription, with no attempt to include vertebral bodies. Lateral fields were utilized at the cranium and upper cervical spine. Spine fields were either single posterior or 2-3 obliques. Plans were generated with a hybrid of forward and inverse planned IMRT. Inferior borders of the cranium fields and superior border of the lower spine field were designed with 6-15 cm long, gradual dose gradients by sequential closing of multileaf collimator leaves using forward planned multiple static segment IMRT delivery. The sliding window upper spine IMRT field was created by the inverse planning system to match gradients of the brain and lower spine fields. The lower spine field gradient was similarly completed. RESULTS: The cohort consisted of 34 patients. Median CSI dose was 36 Gy (range: 18-39.6 Gy). With a median follow up of 59.4 months, there were no isolated recurrences or spinal myelopathies at CTV margins or field gradients. Eleven patients had recurrence, all of which were intracranial. CONCLUSIONS: Our hybrid forward and inverse planned IMRT supine CSI technique did not result in any isolated recurrences or myelopathies at CTV margins or field gradients. This suggests our target volumes and blended gradients are appropriate for highly conformal three-dimensional planning.


Subject(s)
Central Nervous System Neoplasms/radiotherapy , Craniospinal Irradiation/methods , Radiotherapy, Intensity-Modulated/methods , Central Nervous System Neoplasms/mortality , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Retrospective Studies
11.
J Appl Clin Med Phys ; 15(4): 4413, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25207391

ABSTRACT

The purpose of this study was to develop a simplified methodology that will produce Monte Carlo (MC) dose distribution for proton therapy which can be used as a clinical aid in determining the adequacy of proton plans produced from the treatment planning system (TPS). The Geant4 Monte Carlo toolkit was used for all simulations. The geometry of the double scatter nozzle in the simulation was a simplification of the treatment nozzle. The proton source was modeled as discrete energy layers, each with a unique energy distribution and weighting factor. The simplified MC system was designed to give the same dose distribution as the measured data used to commission the TPS. After the simplified MC system was finalized, a series of verification comparisons were made between it, measurements, and the clinically used TPS. Comparisons included the lateral profile of a stair-shaped compensator that simulated a sharp lateral heterogeneity and depth-dose measurements through heterogeneous materials. The simplified MC system matched measurements to within 2% or 2 mm for all commissioning data under investigation; moreover, the distal edge and lateral penumbra was within 1 mm of the measurements. The simplified MC system was able to better reproduce the measured profiles for a stair-shaped compensator than the TPS. Both MC and TPS matched the measured depth dose through heterogeneous materials to within 2% or 2 mm. The simplified MC system was straightforward to implement, and produced accurate results when compared to measurements. Therefore, it holds promise as a clinically useful methodology to validate the relative dose distribution of patient treatment plans produced by the treatment planning systems.


Subject(s)
Monte Carlo Method , Proton Therapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted , Radiotherapy, High-Energy , Computer Simulation , Humans , Models, Theoretical , Phantoms, Imaging , Radiotherapy Dosage , Software
12.
Article in English | MEDLINE | ID: mdl-39027884

ABSTRACT

Purpose: This study aims to automate the Monte Carlo (MC) workflow utilized for radiotherapy dosimetry, focusing on an Elekta LINAC delivery system. It addresses the challenge of integrating MC simulations into routine clinical practice, making this accurate yet complex method more accessible and efficient for radiotherapy dosimetry. Methods and Materials: We developed a user-friendly software featuring a graphical user interface (GUI) that integrates EGSnrc for MC simulations. The software streamlines the process from retrieving Digital Imaging and Communications in Medicine (DICOM) data to executing dose calculations and comparing dose distributions. To validate our proposed tool, we compared its computed doses for IMRT and VMAT plans from the Pinnacle TPS for an Elekta Versa HD linear accelerator against MC simulation results. This comparison utilized our in-house software and GUI as the tool, covering various treatment sites and prescriptions. Results: The automated MC workflow demonstrated high accuracy in dose calculations and streamlined integration with clinical workflows. The comparison between the MC-simulated and TPS-calculated doses revealed excellent agreement, highlighting the reliability of MC for independent dose verification in complex treatment scenarios. Conclusions: The automated MC workflow developed represents a substantial improvement in the practicality and efficiency of MC simulations in radiotherapy. This advancement not only simplifies the dosimetry process but also ensures high accuracy, establishing it as a valuable tool for routine patient-specific quality assurance and the development of specialized treatment procedures.

13.
Phys Imaging Radiat Oncol ; 29: 100564, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38544867

ABSTRACT

Background and Purpose: The effort to translate clinical findings across institutions employing different relative biological effectiveness (RBE) models of ion radiotherapy has rapidly grown in recent years. Nevertheless, even for a chosen RBE model, different implementations exist. These approaches might consider or disregard the dose-dependence of the RBE and the radial variation of the radiation quality around the beam axis. This study investigated the theoretical impact of disregarding these effects during the RBE calculations. Materials and Methods: Microdosimetric simulations were carried out using the Monte Carlo code PHITS along the spread out Bragg peaks of 1H, 4He, 12C, 16O, and 20Ne ions in a water phantom. The RBE was computed using different implementations of the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM) and the modified MKM, considering or not the radial variation of the radiation quality in the penumbra of the ion beams and the dose-dependence of the RBE. Results: For an OAR located 5 mm laterally from the target volume, disregarding the radial variation of the radiation quality or the dose-dependence of the RBE could result in an overestimation of the RBE-weighted dose up to a factor of âˆ¼ 3.5 or âˆ¼ 1.7, respectively. Conclusions: The RBE-weighted dose to OARs close to the tumor volume was substantially impacted by the approach employed for the RBE calculations, even when using the same RBE model and cell line. Therefore, care should be taken in considering these differences while translating clinical findings between institutions with dissimilar approaches.

14.
Med Phys ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153222

ABSTRACT

BACKGROUND: Phenomenological relative biological effectiveness (RBE) models for proton therapy, based on the dose-averaged linear energy transfer (LET), have been developed to address the apparent RBE increase towards the end of the proton range. The results of these phenomenological models substantially differ due to varying empirical assumptions and fitting functions. In contrast, more theory-based approaches are used in carbon ion radiotherapy, such as the microdosimetric kinetic model (MKM). However, implementing microdosimetry-based models in LET-based proton therapy treatment planning systems poses challenges. PURPOSE: This work presents a LET-based version of the MKM that is practical for clinical use in proton radiotherapy. METHODS: At first, we derived an approximation of the Mayo Clinic Florida (MCF) MKM for relatively-sparsely ionizing radiation such as protons. The mathematical formalism of the proposed model is equivalent to the original MKM, but it maintains some key features of the MCF MKM, such as the determination of model parameters from measurable cell characteristics. Subsequently, we carried out Monte Carlo calculations with PHITS in different simulated scenarios to establish a heuristic correlation between microdosimetric quantities and the dose averaged LET of protons. RESULTS: A simple allometric function was found able to describe the relationship between the dose-averaged LET of protons and the dose-mean lineal energy, which includes the contributions of secondary particles. The LET-based MKM was used to model the in vitro clonogenic survival RBE of five human and rodent cell lines (A549, AG01522, CHO, T98G, and U87) exposed to pristine and spread-out Bragg peak (SOBP) proton beams. The results of the LET-based MKM agree well with the biological data in a comparable or better way with respect to the other models included in the study. A sensitivity analysis on the model results was also performed. CONCLUSIONS: The LET-based MKM integrates the predictive theoretical framework of the MCF MKM with a straightforward mathematical description of the RBE based on the dose-averaged LET, a physical quantity readily available in modern treatment planning systems for proton therapy.

15.
Radiat Res ; 201(6): 604-616, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38376467

ABSTRACT

This study offers a review of published data on DNA double strand break (DSB) repair kinetics after exposure to ionizing radiation. By compiling a database, which currently includes 285 DNA DSB repair experiments utilizing both photons and ions, we investigate the impact of distinct experimental parameters on the kinetics of DNA DSB repair. Methodological differences and inconsistencies in reporting make the comparison of data generated by different research groups challenging. Nevertheless, by implementing filtering criteria, we can compare repair kinetics obtained with normal and tumor cells derived from human or animal tissues, as well as cells exposed to photons or ions ranging from hydrogen to iron ions. In addition, several repair curves of repair deficient cell lines were included. The study aims to provide researchers with a comprehensive overview of experimental factors that may confound results and emphasize the importance of precise reporting of experimental parameters. Moreover, we identify gaps in the literature that require attention in future studies, aiming to address clinically relevant questions related to radiotherapy. The database can be freely accessed at: https://github.com/weradstake/DRDNA.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Photons , DNA Breaks, Double-Stranded/radiation effects , Humans , DNA Repair/radiation effects , Kinetics , Animals , Ions
16.
J Radiat Res ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278665

ABSTRACT

The repair of DNA double-strand breaks is a crucial yet delicate process which is affected by a multitude of factors. In this study, our goal is to analyse the influence of the linear energy transfer (LET) on the DNA repair kinetics. By utilizing the database of repair of DNA and aggregating the results of 84 experiments, we conduct various model fits to evaluate and compare different hypothesis regarding the effect of LET on the rejoining of DNA ends. Despite the considerable research efforts dedicated to this topic over the past decades, our findings underscore the complexity of the relationship between LET and DNA repair kinetics. This study leverages big data analysis to capture overall trends that single experimental studies might miss, providing a valuable model for understanding how radiation quality impacts DNA damage and subsequent biological effects. Our results highlight the gaps in our current understanding, emphasizing the pressing need for further investigation into this phenomenon.

17.
Biomed Phys Eng Express ; 10(5)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39094590

ABSTRACT

Purpose. Secondary skin collimation (SSC) is essential for shielding normal tissues near tumors during electron and orthovoltage radiation treatments. Traditional SSC fabrication methods, such as crafting in-house lead sheets, are labor-intensive and produce SSCs with low geometric accuracy. This study introduces a workflow that integrated 3D scanning and 3D printing technologies with an in-house mold process, enabling the production of patient-specific SSCs within six hours.Methods. An anthropomorphic head phantom was scanned with a handheld 3D scanner. The resulting scan data was imported into 3D modeling software for design. The completed model was exported to a 3D printer as a printable file. Subsequently, molten Cerrobend was poured into the mold and allowed to set, completing the SSC production. Geometric accuracy was assessed using CT images, and the shielding effectiveness was evaluated through film dosimetry.Results. The 3D printed mold achieved submillimeter accuracy (0.5 mm) and exhibited high conformity to the phantom surface. It successfully endured the weight and heat of the Cerrobend during pouring and curing. Dosimetric analysis conducted with radiochromic film demonstrated good agreement between the measured and expected attenuation values of the SSC slab, within ±3%.Conclusions. This study presents a proof of concept for novel mold room workflows that produce patient-specific SSCs within six hours, a significant improvement over the traditional SSC fabrication process, which takes 2-3 days. The submillimeter accuracy and versatility of 3D scanning and printing technologies afford greater design freedom and enhanced delivery accuracy for cases involving irregular geometries.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Skin , Humans , Tomography, X-Ray Computed/methods , Software , Head , Equipment Design , Radiation Protection/methods , Radiation Protection/instrumentation , Film Dosimetry/methods , Film Dosimetry/instrumentation
18.
Article in English | MEDLINE | ID: mdl-38707713

ABSTRACT

Carbon-ion radiation therapy (CIRT) is an up-and-coming modality for cancer treatment. Implementation of CIRT requires collaboration among specialists like radiation oncologists, medical physicists, and other healthcare professionals. Effective communication among team members is necessary for the success of CIRT. However, the current workflows involving data management, treatment planning, scheduling, and quality assurance (QA) can be susceptible to errors, leading to delays and decreased efficiency. With the aim of addressing these challenges, a team of medical physicists developed an in-house workflow management software using FileMaker Pro. This tool has streamlined the workflow and improved the efficiency and quality of patient care.

19.
Med Phys ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008830

ABSTRACT

BACKGROUND: In carbon ion radiation therapy (CIRT) the predominant method of irradiation is raster scanning, called dose driven continuous scanning (DDCS) by Hitachi, allowing for continuous synchrotron extraction. The reduction in irradiation time is highly beneficial in minimizing the impact of patient and target movement on dose distribution. The RF knock out (RFKO) slow-extraction method is commonly used for beam on/off control. When the Hitachi synchrotron receives a beam off signal the control system stops the RFKO and after some delay time (t-delay) during which the beam intensity declines, a high-speed steering magnet (HSST) is used to sweep the remaining beam from isocenter to a beam dump for safety reasons. Mayo Clinic Florida (MCF) will use a very short delay of the HSST operation from the RFKO beam OFF signal to minimize the delay time and delayed dose. MCF clinical beam intensity, a tenfold increase over HIMAK, is still less than 100 mMU/ms (approximately 4.9 × 109 pps for 430 MeV/u). PURPOSE: The rapid beam off control (RBOC) proposed for MCF is associated with the occurrence of flap dose (FD), which refers to the asymmetric shoulder of the spot dose profile formed from the beam bent by HSST deviating from its planned spot position on the isocenter plane. In this study, we quantitatively assessed FD, proposed a treatment planning system (TPS) implementation using a flap spot (FS) and evaluated its impact on dose distribution. METHOD: The experiments were conducted at the Osaka Heavy Ion Therapy Center (HIMAK) varying the t-delay from 0.01 to 1 ms in a research environment to simulate the MCF RBOC. We studied the dependence of FD position on beam transport and its dependence on energy and beam intensity. FD was generated by delivering 10000 continuous spots on the central axis that are occasionally triggered by an external 10 Hz gate signal. Measurements were conducted using an oscilloscope, and the nozzle's spot position monitor (SPM) and dose monitor (DM). RESULT: All spot profile data were corrected for the gain of the SPM's beam intensity dependence. FD was determined by fitting the (SPM) Profile data to a double Gaussian. The position of the FS was found to be transport path dependent, with FS occurring on the opposite sides of the scanning x-direction for vertical and horizontal ports, respectively, as predicted by transport calculations. It was observed that the FD increases with beam intensity and did not exhibit a significant dependence on energy. The effect of FD on treatment planning is shown to have no significant dose impact on the organs at risk (OARs) near the target for clinical beam intensities and a modest increase for very high intensities. CONCLUSION: Using HIMAK in research mode the implications are that the FD has no clinical impact on the clinical CIRT beam intensities for MCF and maybe planned for higher intensities by incorporating FS into the TPS to predict the modest increased dose to OARs. A method for commissioning and quality assurance of FD has been proposed.

20.
Med Phys ; 51(3): 2239-2250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37877590

ABSTRACT

BACKGROUND: Using the pencil beam raster scanning method employed at most carbon beam treatment facilities, spots can be moved without interrupting the beam, allowing for the delivery of a dose between spots (move dose). This technique is also known as Dose-Driven-Continuous-Scanning (DDCS). To minimize its impact on HIMAK patient dosimetry, there's an upper limit to the move dose. Spots within a layer are grouped into sets, or "break points," allowing continuous irradiation. The beam is turned off when transitioning between sets or at the end of a treatment layer or spill. The control system beam-off is accomplished by turning off the RF Knockout (RFKO) extraction and after a brief delay the High Speed Steering Magnet (HSST) redirects the beam transport away from isocenter to a beam dump. PURPOSE: The influence of the move dose and beam on/off control on the dose distribution and irradiation time was evaluated by measurements never before reported and modelled for Hitachi Carbon DDCS. METHOD: We conducted fixed-point and scanning irradiation experiments at three different energies, both with and without breakpoints. For fixed-point irradiation, we utilized a 2D array detector and an oscilloscope to measure beam intensity over time. The oscilloscope data enabled us to confirm beam-off and beam-on timing due to breakpoints, as well as the relative timing of the RFKO signal, HSST signal, and dose monitor (DM) signals. From these measurements, we analyzed and modelled the temporal characteristics of the beam intensity. We also developed a model for the spot shape and amplitude at isocenter occurring after the beam-off signal which we called flap dose and its dependence on beam intensity. In the case of scanning irradiation, we measured move doses using the 2D array detector and compared these measurements with our model. RESULT: We observed that the most dominant time variation of the beam intensity was at 1 kHz and its harmonic frequencies. Our findings revealed that the derived beam intensity cannot reach the preset beam intensity when each spot belongs to different breakpoints. The beam-off time due to breakpoints was approximately 100 ms, while the beam rise time and fall time (tdecay ) were remarkably fast, about 10 ms and 0.2 ms, respectively. Moreover, we measured the time lag (tdelay ) of approximately 0.2 ms between the RFKO and HSST signals. Since tdelay ≈ tdecay at HIMAK then the HSST is activated after the residual beam intensity, resulting in essentially zero flap dose at isocenter from the HSST. Our measurements of the move dose demonstrated excellent agreement with the modelled move dose. CONCLUSION: We conducted the first move dose measurement for a Hitachi Carbon synchrotron, and our findings, considering beam on/off control details, indicate that Hitachi's carbon synchrotron provides a stable beam at HIMAK. Our work suggests that measuring both move dose and flap dose should be part of the commissioning process and possibly using our model in the Treatment Planning System (TPS) for new facilities with treatment delivery control systems with higher beam intensities and faster beam-off control.


Subject(s)
Heavy Ions , Proton Therapy , Humans , Proton Therapy/methods , Ions , Radiotherapy Planning, Computer-Assisted/methods , Carbon/therapeutic use , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL