Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Mol Ther ; 28(1): 52-63, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31704085

ABSTRACT

Enhancing natural killer (NK) cell cytotoxicity by blocking inhibitory signaling could lead to improved NK-based cancer immunotherapy. Thus, we have developed a highly efficient method for editing the genome of human NK cells using CRISPR/Cas9 to knock out inhibitory signaling molecules. Our method efficiently edits up to 90% of primary peripheral blood NK cells. As a proof-of-principle we demonstrate highly efficient knockout of ADAM17 and PDCD1, genes that have a functional impact on NK cells, and demonstrate that these gene-edited NK cells have significantly improved activity, cytokine production, and cancer cell cytotoxicity. Furthermore, we were able to expand cells to clinically relevant numbers, without loss of activity. We also demonstrate that our CRISPR/Cas9 method can be used for efficient knockin of genes by delivering homologous recombination template DNA using recombinant adeno-associated virus serotype 6 (rAAV6). Our platform represents a feasible method for generating engineered primary NK cells as a universal therapeutic for cancer immunotherapy.


Subject(s)
Adoptive Transfer/methods , Cell Engineering/methods , Genetic Engineering/methods , Killer Cells, Natural/immunology , Ovarian Neoplasms/therapy , ADAM17 Protein/genetics , Animals , CRISPR-Cas Systems , Cytotoxicity, Immunologic/genetics , Dependovirus , Female , Gene Knockout Techniques , Healthy Volunteers , Humans , K562 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/pathology , Parvovirinae/genetics , Programmed Cell Death 1 Receptor/genetics , Treatment Outcome , Xenograft Model Antitumor Assays
2.
Blood ; 129(26): 3428-3439, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28533309

ABSTRACT

The aryl hydrocarbon receptor (AHR) plays an important physiological role in hematopoiesis. AHR is highly expressed in hematopoietic stem and progenitor cells (HSPCs) and inhibition of AHR results in a marked expansion of human umbilical cord blood-derived HSPCs following cytokine stimulation. It is unknown whether AHR also contributes earlier in human hematopoietic development. To model hematopoiesis, human embryonic stem cells (hESCs) were allowed to differentiate in defined conditions in the presence of the AHR antagonist StemReginin-1 (SR-1) or the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We demonstrate a significant increase in CD34+CD31+ hematoendothelial cells in SR-1-treated hESCs, as well as a twofold expansion of CD34+CD45+ hematopoietic progenitor cells. Hematopoietic progenitor cells were also significantly increased by SR-1 as quantified by standard hematopoietic colony-forming assays. Using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-engineered hESC-RUNX1c-tdTomato reporter cell line with AHR deletion, we further demonstrate a marked enhancement of hematopoietic differentiation relative to wild-type hESCs. We also evaluated whether AHR antagonism could promote innate lymphoid cell differentiation from hESCs. SR-1 increased conventional natural killer (cNK) cell differentiation, whereas TCDD treatment blocked cNK development and supported group 3 innate lymphoid cell (ILC3) differentiation. Collectively, these results demonstrate that AHR regulates early human hematolymphoid cell development and may be targeted to enhance production of specific cell populations derived from human pluripotent stem cells.


Subject(s)
Hematopoiesis , Pluripotent Stem Cells/cytology , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Cell Differentiation , Cells, Cultured , Embryonic Stem Cells/cytology , Hematopoietic Stem Cells/cytology , Humans , Lymphocyte Subsets/cytology , Receptors, Aryl Hydrocarbon/agonists
3.
Gynecol Oncol ; 153(1): 149-157, 2019 04.
Article in English | MEDLINE | ID: mdl-30658847

ABSTRACT

OBJECTIVE: Natural killer (NK) cells are lymphocytes well suited for adoptive immunotherapy. Attempts with adoptive NK cell immunotherapy against ovarian cancer have proven unsuccessful, with the main limitations including failure to expand and diminished effector function. We investigated if incubation of NK cells with interleukin (IL)-12, IL-15, and IL-18 for 16h could produce cytokine-induced memory-like (CIML) NK cells capable of enhanced function against ovarian cancer. METHODS: NK cells were preactivated briefly with IL-12, IL-15, and IL-18, rested, then placed against ovarian cancer targets to assess phenotype and function via flow cytometry. Real-time NK-cell-mediated tumor-killing was evaluated. Using ascites cells and cell-free ascites fluid, NK cell proliferation and function within the immunosuppressive microenvironment was evaluated in vitro. Finally, CIML NK cells were injected intraperitoneal (IP) into an in vivo xenogeneic mouse model of ovarian cancer. RESULTS: CIML NK cells demonstrate enhanced cytokine (IFN-γ) production and NK-cell-mediated killing of ovarian cancer. NK cells treated overnight with cytokines led to robust activation characterized by temporal shedding of CD16, induction of CD25, and enhanced proliferation. CIML NK cells proliferate more with enhanced effector function compared to controls in an immunosuppressive microenvironment. Finally, human CIML NK cells exhibited potent antitumor effects within a xenogeneic mouse model of ovarian cancer. CONCLUSIONS: CIML NK cells have enhanced functionality and persistence against ovarian cancer in vitro and in vivo, even when exposed to ascites fluid. These findings provide a strategy for NK cell-based immunotherapy to circumvent the immunosuppressive nature of ovarian cancer.


Subject(s)
Carcinoma, Ovarian Epithelial/therapy , Cytokine-Induced Killer Cells/immunology , Cytokine-Induced Killer Cells/transplantation , Immunotherapy, Adoptive/methods , Interleukins/pharmacology , Animals , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Immunologic Memory/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-12/immunology , Interleukin-12/pharmacology , Interleukin-15/immunology , Interleukin-15/pharmacology , Interleukin-18/immunology , Interleukin-18/pharmacology , Interleukins/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology , Xenograft Model Antitumor Assays
4.
Stem Cells ; 34(1): 93-101, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26503833

ABSTRACT

Natural killer (NK) cells can provide effective immunotherapy for ovarian cancer. Here, we evaluated the ability of NK cells isolated from peripheral blood (PB) and NK cells derived from induced pluripotent stem cell (iPSC) to mediate killing of ovarian cancer cells in a mouse xenograft model. A mouse xenograft model was used to evaluate the intraperitoneal delivery of three different NK cell populations: iPSC-derived NK cells, PB-NK cells that had been activated and expanded in long-term culture, and overnight activated PB-NK cells that were isolated through CD3/CD19 depletion of PB B and T cells. Bioluminescent imaging was used to monitor tumor burden of luciferase expressing tumor lines. Tumors were allowed to establish prior to administering NK cells via intraperitoneal injection. These studies demonstrate a single dose of any of the three NK cell populations significantly reduced tumor burden. When mice were given three doses of either iPSC-NK cells or expanded PB-NK cells, the median survival improved from 73 days in mice untreated to 98 and 97 days for treated mice, respectively. From these studies, we conclude iPSC-derived NK cells mediate antiovarian cancer killing at least as well as PB-NK cells, making these cells a viable resource for immunotherapy for ovarian cancer. Due to their ability to be easily differentiated into NK cells and their long-term expansion potential, iPSCs can be used to produce large numbers of well-defined NK cells that can be banked and used to treat a large number of patients including treatment with multiple doses if necessary.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Killer Cells, Natural/cytology , Ovarian Neoplasms/therapy , Animals , Cell Line, Tumor , Cell Proliferation , Female , Flow Cytometry , Humans , Immunotherapy , Mice , Ovarian Neoplasms/blood
5.
Stem Cells ; 32(4): 1021-31, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24307574

ABSTRACT

Cell-based immunotherapy has been gaining interest as an improved means to treat human immunodeficiency virus (HIV)/AIDS. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) could become a potential resource. Our previous studies have shown hESC and iPSC-derived natural killer (NK) cells can inhibit HIV-infected targets in vitro. Here, we advance those studies by expressing a HIV chimeric receptor combining the extracellular portion of CD4 to the CD3ζ intracellular signaling chain. We hypothesized that expression of this CD4ζ receptor would more efficiently direct hESC- and iPSC-derived NK cells to target HIV-infected cells. In vitro studies showed the CD4ζ expressing hESC- and iPSC-NK cells inhibited HIV replication in CD4+ T-cells more efficiently than their unmodified counterparts. We then evaluated CD4ζ expressing hESC (CD4ζ-hESC)- and iPSC-NK cells in vivo anti-HIV activity using a humanized mouse model. We demonstrated significant suppression of HIV replication in mice treated with both CD4ζ-modified and -unmodified hESC-/iPSC-NK cells compared with control mice. However, we did not observe significantly increased efficacy of CD4ζ expression in suppression of HIV infection. These studies indicate that hESC/iPSC-based immunotherapy can be used as a unique resource to target HIV/AIDS.


Subject(s)
CD4 Antigens/biosynthesis , Gene Expression Regulation , HIV Infections/metabolism , HIV-1 , Induced Pluripotent Stem Cells/metabolism , Killer Cells, Natural/metabolism , Animals , CD4 Antigens/genetics , Cell Line , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , HIV Infections/genetics , HIV Infections/pathology , HIV Infections/therapy , Humans , Induced Pluripotent Stem Cells/pathology , Mice , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Stem Cell Transplantation
6.
PLoS Genet ; 8(11): e1003034, 2012.
Article in English | MEDLINE | ID: mdl-23133403

ABSTRACT

Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromosome Aberrations , DNA Helicases/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Alleles , Animals , Chromosomal Instability , DNA Helicases/metabolism , DNA Replication , Disease Models, Animal , Genes, Dominant , Humans , Mice , Minichromosome Maintenance Complex Component 4 , Mutation , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Reticulocytes/cytology , Reticulocytes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Cytotherapy ; 15(10): 1297-306, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23993303

ABSTRACT

BACKGROUND AIMS: There is an urgent need for novel therapeutic strategies for relapsed ovarian cancer. Dramatic clinical anti-tumor effects have been observed with interleukin (IL)-2 activated natural killer (NK) cells; however, intravenous delivery of NK cells in patients with ovarian cancer has not been successful in ameliorating disease. We investigated in vivo engraftment of intraperitoneally (IP) delivered NK cells in an ovarian cancer xenograft model to determine if delivery mode can affect tumor cell killing and circumvent lack of NK cell expansion. METHODS: An ovarian cancer xenograft mouse model was established to evaluate efficacy of IP-delivered NK cells. Tumor burden was monitored by bioluminescent imaging of luciferase-expressing ovarian cancer cells. NK cell persistence, tumor burden and NK cell trafficking were evaluated. Transplanted NK cells were evaluated by flow cytometry and cytotoxicity assays. RESULTS: IP delivery of human NK cells plus cytokines led to high levels of circulating NK and was effective in clearing intraperitoneal ovarian cancer burden in xenografted mice. NK cells remained within the peritoneal cavity 54 days after injection and had markers of maturation. Additionally, surviving NK cells were able to kill ovarian cancer cells at a rate similar to pre-infusion levels, supporting that in vivo functionality of human NK cells can be maintained after IP infusion. CONCLUSIONS: IP delivery of NK cells leads to stable engraftment and antitumor response in an ovarian cancer xenograft model. These data support further pre-clinical and clinical evaluation of IP delivery of allogeneic NK cells in ovarian cancer.


Subject(s)
Adenocarcinoma/therapy , Cancer Vaccines , Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Ovarian Neoplasms/therapy , Peritoneal Cavity/pathology , Adenocarcinoma/immunology , Animals , Antigens, Differentiation/metabolism , Cell Proliferation , Cell Survival , Cytotoxicity, Immunologic , Female , Humans , Injections, Intraperitoneal , Interleukin-2/immunology , K562 Cells , Killer Cells, Natural/immunology , Lymphocyte Activation , Mice , Mice, Inbred NOD , Ovarian Neoplasms/immunology , Recurrence , Tumor Burden , Xenograft Model Antitumor Assays
8.
Cancer Immunol Res ; 11(5): 674-686, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36807510

ABSTRACT

Immune checkpoint blockade (ICB) has changed the standard of care for many patients with cancer, yet no ICB is approved for ovarian cancer. We hypothesized that maintenance therapy with an IL15 "superagonist" (N-803) and ICB in combination could induce potent immune activation in ovarian cancer. Using flow cytometry, cytometry by time of flight analysis, and cytotoxicity assays, we analyzed patient samples from women with advanced epithelial ovarian cancer treated with N-803 for indications of PD-1/PD-L1 upregulation with this treatment. In addition, ICB and N-803 were evaluated in preclinical studies to determine the functional impact of combination therapy on natural killer (NK) cells in vitro and in vivo. We observed that N-803 stimulated initial NK-cell expansion in patient samples; however, proliferation was not sustained beyond 2 weeks despite continued treatment. This result was reverse translated back to the laboratory to determine the functional relevance of this finding. The addition of ICB with an antibody-dependent cellular cytotoxicity IgG1 antibody against PD-L1 (avelumab) or an IgG4 antibody against PD-1 (pembrolizumab) enhanced N-803 induced NK-cell function in vitro. Using models of human ovarian cancer and NK-cell adoptive transfer in mice, we showed enhanced antitumor control with N-803 and ICB, as well as a combination effect that enhanced NK-cell persistence and expansion in vivo. This work suggests that PD-1/PD-L1 blockade combined with IL15 signaling may overcome resistance to cytokine therapy in ovarian cancer.


Subject(s)
B7-H1 Antigen , Ovarian Neoplasms , Humans , Female , Animals , Mice , Interleukin-15/pharmacology , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Immunotherapy , Ovarian Neoplasms/drug therapy
9.
Front Immunol ; 14: 1060905, 2023.
Article in English | MEDLINE | ID: mdl-36911670

ABSTRACT

New treatments are required to enhance current therapies for lung cancer. Mesothelin is a surface protein overexpressed in non-small cell lung cancer (NSCLC) that shows promise as an immunotherapeutic target in phase I clinical trials. However, the immunosuppressive environment in NSCLC may limit efficacy of these therapies. We applied time-of-flight mass cytometry to examine the state of circulating mononuclear cells in fourteen patients undergoing treatment for unresectable lung cancer. Six patients had earlier stage NSCLC (I-IVA) and eight had highly advanced NSCLC (IVB). The advanced NSCLC patients relapsed with greater frequency than the earlier stage patients. Before treatment, patients with very advanced NSCLC had a greater proportion of CD14- myeloid cells than patients with earlier NSCLC. These patients also had fewer circulating natural killer (NK) cells bearing an Fc receptor, CD16, which is crucial to antibody-dependent cellular cytotoxicity. We designed a high affinity tri-specific killer engager (TriKE®) to enhance NK cytotoxicity against mesothelin+ targets in this environment. The TriKE consisted of CD16 and mesothelin binding elements linked together by IL-15. TriKE enhanced proliferation of lung cancer patient NK cells in vitro. Lung cancer lines are refractory to NK cell killing, but the TriKE enhanced cytotoxicity and cytokine production by patient NK cells when challenged with tumor. Importantly, TriKE triggered NK cell responses from patients at all stages of disease and treatment, suggesting TriKE can enhance current therapies. These pre-clinical studies suggest mesothelin-targeted TriKE has the potential to overcome the immunosuppressive environment of NSCLC to treat disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Mesothelin , Killer Cells, Natural/metabolism , Antibody-Dependent Cell Cytotoxicity , Immunosuppressive Agents/metabolism
10.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: mdl-35727627

ABSTRACT

NK cell exhaustion is caused by chronic exposure to activating stimuli during viral infection, tumorigenesis, and prolonged cytokine treatment. Evidence suggests that exhaustion may play a role in disease progression. However, relative to T cell exhaustion, the mechanisms underlying NK cell exhaustion and methods of reversing it are poorly understood. Here, we describe a potentially novel in vitro model of exhaustion that uses plate-bound agonists of the NK cell activating receptors NKp46 and NKG2D to induce canonical exhaustion phenotypes. In this model, prolonged activation resulted in downregulation of activating receptors, upregulation of checkpoint markers, decreased cytokine production and cytotoxicity in vitro, weakened glycolytic capacity, and decreased persistence, function, and tumor control in vivo. Furthermore, we discovered a beneficial effect of NK cell inhibitory receptor signaling during exhaustion. By simultaneously engaging the inhibitory receptor NKG2A during activation in our model, cytokine production and cytotoxicity defects were mitigated, suggesting that balancing positive and negative signals integrated by effector NK cells can be beneficial for antitumor immunity. Together, these data uncover some of the mechanisms underlying NK cell exhaustion in humans and establish our in vitro model as a valuable tool for studying the processes regulating exhaustion.


Subject(s)
Killer Cells, Natural , Neoplasms , Carrier Proteins , Cytokines , Humans
11.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36162918

ABSTRACT

BACKGROUND: The tumor microenvironment contains stromal cells, including endothelial cells and fibroblasts, that aid tumor growth and impair immune cell function. Many solid tumors remain difficult to cure because of tumor-promoting stromal cells, but current therapies targeting tumor stromal cells are constrained by modest efficacy and toxicities. TEM8 is a surface antigen selectively upregulated on tumor and tumor stromal cells, endothelial cells and fibroblasts that may be targeted with specific natural killer (NK) cell engagement. METHODS: A Tri-specific Killer Engager (TriKE) against TEM8-'cam1615TEM8'-was generated using a mammalian expression system. Its function on NK cells was assessed by evaluation of degranulation, inflammatory cytokine production, and killing against tumor and stroma cell lines in standard co-culture and spheroid assays. cam1615TEM8-mediated proliferation and STAT5 phosphorylation in NK cells was tested and compared with T cells by flow cytometry. NK cell proliferation, tumor infiltration, and tumor and tumor-endothelium killing by cam1615TEM8 and interleukin-15 (IL-15) were assessed in NOD scid gamma (NSG) mice. RESULTS: cam1615TEM8 selectively stimulates NK cell degranulation and inflammatory cytokine production against TEM8-expressing tumor and stromal cell lines. The increased activation translated to superior NK cell killing of TEM8-expressing tumor spheroids. cam1615TEM8 selectively stimulated NK cell but not T cell proliferation in vitro and enhanced NK cell proliferation, survival, and tumor infiltration in vivo. Finally, cam1615TEM8 stimulated NK cell killing of tumor and tumor endothelial cells in vivo. CONCLUSIONS: Our findings indicate that the cam1615TEM8 TriKE is a novel anti-tumor, anti-stroma, and anti-angiogenic cancer therapy for patients with solid tumors. This multifunctional molecule works by selectively targeting and activating NK cells by costimulation with IL-15, and then targeting that activity to TEM8+ tumor cells and TEM8+ tumor stroma.


Subject(s)
Interleukin-15 , Neoplasms , Animals , Antigens, Surface/metabolism , Endothelial Cells , Interleukin-15/metabolism , Killer Cells, Natural , Mammals/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Microfilament Proteins , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, Cell Surface , STAT5 Transcription Factor/metabolism , Tumor Microenvironment
12.
Transl Oncol ; 16: 101318, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34942534

ABSTRACT

Epithelial ovarian cancer (EOC) is a highly heterogeneous disease encompassing several distinct molecular subtypes and clinical entities. Despite the initial success of surgical debulking and adjuvant chemotherapy, recurrence with chemotherapy resistant tumors is common in patients with EOC and leads to poor overall survival. The extensive genetic and phenotypic heterogeneity associated with ovarian cancers has hindered the identification of effective prognostic and predictive biomarkers in EOC patients. In the current studies, we identify a tumor cell surface oncoantigen, chondroitin sulfate proteoglycan 4 (CSPG4), as an independent risk factor for decreased survival of patients with EOC. Our results show that CSPG4 promotes EOC cell invasion, cisplatin resistance and spheroid formation in vitro and tumor expansion in vivo. Mechanistically, spheroid formation and tumor cell invasion are due to CSPG4-stimulated expression of the mesenchymal transcription factor ZEB1. Furthermore, we have developed a novel monoclonal anti-CSGP4 antibody against the juxtamembrane domain of the core protein that limits CSPG4-stimulated ZEB1 expression, tumor cell invasion and promotes EOC apoptosis within spheroid cultures. We therefore propose that CSPG4 expression drives phenotypic heterogeneity and malignant progression in EOC tumors. These studies further demonstrate that CSPG4 expression levels are a potential diagnostic biomarker in EOC and indicate that targeting cells which express this oncoantigen could limit recurrence and improve outcomes in patients with EOC.

13.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36319065

ABSTRACT

BACKGROUND: Natural killer (NK) cells hold great promise as a source for allogeneic cell therapy against hematological malignancies, including acute myeloid leukemia (AML). Current treatments are hampered by variability in NK cell subset responses, a limitation which could be circumvented by specific expansion of highly potent single killer immunoglobulin-like receptor (KIR)+NKG2C+ adaptive NK cells to maximize missing-self reactivity. METHODS: We developed a GMP-compliant protocol to expand adaptive NK cells from cryopreserved cells derived from select third-party superdonors, that is, donors harboring large adaptive NK cell subsets with desired KIR specificities at baseline. We studied the adaptive state of the cell product (ADAPT-NK) by flow cytometry and mass cytometry as well as cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq). We investigated the functional responses of ADAPT-NK cells against a wide range of tumor target cell lines and primary AML samples using flow cytometry and IncuCyte as well as in a mouse model of AML. RESULTS: ADAPT-NK cells were >90% pure with a homogeneous expression of a single self-HLA specific KIR and expanded a median of 470-fold. The ADAPT-NK cells largely retained their adaptive transcriptional signature with activation of effector programs without signs of exhaustion. ADAPT-NK cells showed high degranulation capacity and efficient killing of HLA-C/KIR mismatched tumor cell lines as well as primary leukemic blasts from AML patients. Finally, the expanded adaptive NK cells had preserved robust antibody-dependent cellular cytotoxicity potential and combination of ADAPT-NK cells with an anti-CD16/IL-15/anti-CD33 tri-specific engager led to near-complete killing of resistant CD45dim blast subtypes. CONCLUSIONS: These preclinical data demonstrate the feasibility of off-the-shelf therapy with a non-engineered, yet highly specific, NK cell population with full missing-self recognition capability.


Subject(s)
Cytotoxicity, Immunologic , Leukemia, Myeloid, Acute , Animals , Mice , Antibody-Dependent Cell Cytotoxicity , Killer Cells, Natural/metabolism , Leukemia, Myeloid, Acute/pathology , Receptors, KIR/metabolism
14.
Cell Stem Cell ; 28(12): 2062-2075.e5, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34525347

ABSTRACT

Select subsets of immune effector cells have the greatest propensity to mediate antitumor responses. However, procuring these subsets is challenging, and cell-based immunotherapy is hampered by limited effector-cell persistence and lack of on-demand availability. To address these limitations, we generated a triple-gene-edited induced pluripotent stem cell (iPSC). The clonal iPSC line was engineered to express a high affinity, non-cleavable version of the Fc receptor CD16a and a membrane-bound interleukin (IL)-15/IL-15R fusion protein. The third edit was a knockout of the ecto-enzyme CD38, which hydrolyzes NAD+. Natural killer (NK) cells derived from these uniformly engineered iPSCs, termed iADAPT, displayed metabolic features and gene expression profiles mirroring those of cytomegalovirus-induced adaptive NK cells. iADAPT NK cells persisted in vivo in the absence of exogenous cytokine and elicited superior antitumor activity. Our findings suggest that unique subsets of the immune system can be modeled through iPSC technology for effective treatment of patients with advanced cancer.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Cells, Cultured , Humans , Immunotherapy , Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms/therapy
15.
Cancers (Basel) ; 12(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961861

ABSTRACT

We improved the bispecific antibody platform that primarily engages natural killer (NK) cells to kill cancer cells through antibody-dependent cellular cytotoxicity (ADCC) by adding IL-15 as a crosslinker that expands and self-sustains the effector NK cell population. The overall goal was to target B7-H3, an established marker predominantly expressed on cancer cells and minimally expressed on normal cells, and prove that it could target cancer cells in vitro and inhibit tumor growth in vivo. The tri-specific killer engager (TriKETM) was assembled by DNA shuffling and ligation using DNA encoding a camelid anti-CD16 antibody fragment, a wild-type IL-15 moiety, and an anti-B7-H3 scFv (clone 376.96). The expressed and purified cam1615B7H3 protein was tested for in vitro NK cell activity against a variety of tumors and in vivo against a tagged human MA-148 ovarian cancer cell line grafted in NSG mice. cam1615B7H3 showed specific NK cell expansion, high killing activity across a range of B7-H3+ carcinomas, and the ability to mediate growth inhibition of aggressive ovarian cancer in vivo. cam1615B7H3 TriKE improves NK cell function, expansion, targeted cytotoxicity against various types of B7-H3-positive human cancer cell lines, and delivers an anti-cancer effect in vivo in a solid tumor setting.

16.
Cancer Immunol Res ; 8(9): 1139-1149, 2020 09.
Article in English | MEDLINE | ID: mdl-32661096

ABSTRACT

Natural killer (NK) cells are potent immune modulators that can quickly lyse tumor cells and elicit inflammatory responses. These characteristics make them ideal candidates for immunotherapy. However, unlike T cells, NK cells do not possess clonotypic receptors capable of specific antigen recognition and cannot expand via activating receptor signals alone. To enable NK cells with these capabilities, we created and have previously described a tri-specific killer engager (TriKE) platform capable of inducing antigen specificity and cytokine-mediated NK-cell expansion. TriKE molecules have three arms: (i) a single-chain variable fragment (scFv) against the activating receptor CD16 on NK cells to trigger NK-cell activation, (ii) an scFv against a tumor-associated antigen (CD33 here) to induce specific tumor target recognition, and (iii) an IL15 moiety to trigger NK-cell expansion and priming. Here, we demonstrate that by modifying the anti-CD16 scFv with a humanized single-domain antibody against CD16, we improved TriKE functionality. A CD33-targeting second-generation TriKE induced stronger and more specific NK-cell proliferation without T-cell stimulation, enhanced in vitro NK-cell activation and killing of CD33-expressing targets, and improved tumor control in preclinical mouse models. Given these improved functional characteristics, we propose rapid translation of second-generation TriKEs into the clinic.


Subject(s)
Immunotherapy, Adoptive/methods , Interleukin-15/administration & dosage , Interleukin-15/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Animals , Disease Models, Animal , HL-60 Cells , Humans , Leukemia, Promyelocytic, Acute/immunology , Leukemia, Promyelocytic, Acute/therapy , Mice , Mice, Inbred NOD , Mice, SCID , Xenograft Model Antitumor Assays
17.
Sci Transl Med ; 12(568)2020 11 04.
Article in English | MEDLINE | ID: mdl-33148626

ABSTRACT

The development of immunotherapeutic monoclonal antibodies targeting checkpoint inhibitory receptors, such as programmed cell death 1 (PD-1), or their ligands, such as PD-L1, has transformed the oncology landscape. However, durable tumor regression is limited to a minority of patients. Therefore, combining immunotherapies with those targeting checkpoint inhibitory receptors is a promising strategy to bolster antitumor responses and improve response rates. Natural killer (NK) cells have the potential to augment checkpoint inhibition therapies, such as PD-L1/PD-1 blockade, because NK cells mediate both direct tumor lysis and T cell activation and recruitment. However, sourcing donor-derived NK cells for adoptive cell therapy has been limited by both cell number and quality. Thus, we developed a robust and efficient manufacturing system for the differentiation and expansion of high-quality NK cells derived from induced pluripotent stem cells (iPSCs). iPSC-derived NK (iNK) cells produced inflammatory cytokines and exerted strong cytotoxicity against an array of hematologic and solid tumors. Furthermore, we showed that iNK cells recruit T cells and cooperate with T cells and anti-PD-1 antibody, further enhancing inflammatory cytokine production and tumor lysis. Because the iNK cell derivation process uses a renewable starting material and enables the manufacturing of large numbers of doses from a single manufacture, iNK cells represent an "off-the-shelf" source of cells for immunotherapy with the capacity to target tumors and engage the adaptive arm of the immune system to make a "cold" tumor "hot" by promoting the influx of activated T cells to augment checkpoint inhibitor therapies.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Humans , Killer Cells, Natural , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , T-Lymphocytes
18.
JCI Insight ; 3(3)2018 02 08.
Article in English | MEDLINE | ID: mdl-29415897

ABSTRACT

NK cell-based immunotherapies have been gaining traction in the clinic for treatment of cancer. IL-15 is currently being used in number of clinical trials to improve NK cell expansion and function. The objective of this study is to evaluate the effect of repetitive IL-15 exposure on NK cells. An in vitro model in which human NK cells are continuously (on on on) or intermittently (on off on) treated with IL-15 was used to explore this question. After treatment, cells were evaluated for proliferation, survival, cell cycle gene expression, function, and metabolic processes. Our data indicate that continuous treatment of NK cells with IL-15 resulted in decreased viability and a cell cycle arrest gene expression pattern. This was associated with diminished signaling, decreased function both in vitro and in vivo, and reduced tumor control. NK cells continuously treated with IL-15 also displayed a reduced mitochondrial respiration profile when compared with NK cells treated intermittently with IL-15. This profile was characterized by a decrease in the spare respiratory capacity that was dependent on fatty acid oxidation (FAO). Limiting the strength of IL-15 signaling via utilization of an mTOR inhibitor rescued NK cell functionality in the group continuously treated with IL-15. The findings presented here show that human NK cells continuously treated with IL-15 undergo a process consistent with exhaustion that is accompanied by a reduction in FAO. These findings should inform IL-15-dosing strategies in NK cell cancer immunotherapeutic settings.


Subject(s)
Fatty Acids/metabolism , Immunotherapy/methods , Interleukin-15/metabolism , Killer Cells, Natural/immunology , Neoplasms/therapy , Animals , Blood Buffy Coat/cytology , Cell Line, Tumor , Clinical Trials as Topic , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Killer Cells, Natural/transplantation , Mice , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Oxidation-Reduction/drug effects , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Signal Transduction/drug effects , Signal Transduction/immunology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism , Whole-Body Irradiation , Xenograft Model Antitumor Assays
19.
Methods Mol Biol ; 1441: 277-84, 2016.
Article in English | MEDLINE | ID: mdl-27177674

ABSTRACT

Natural killer (NK) cells are an attractive cell population for immunotherapy. Adoptive transfer of NK cells has been tested in multiple clinical trials including acute myeloid leukemia (AML) and ovarian cancer, although limitations do exist especially for treatment of solid tumors. In order to overcome these limitations, mouse xenograft models are needed for evaluation of various NK cell populations, as well as routes of NK cell administration. Here, we describe the methods used for the establishment of an intraperitoneal (ip) ovarian cancer mouse xenograft model with ip delivery of NK cells. This model has been successfully employed with multiple ovarian cell lines and could be applied to other tumor models where the tumor's primary location is in the peritoneal cavity. It is also compatible with multiple routes of NK cell administration. Bioluminescent imaging for monitoring tumor formation and response provides for easy visualization of NK cell tumor inhibition. This xenograft model is superior to other models because the tumor is implanted into the same physiological space where ovarian cancer is found, which allows for improved mimicking of actual disease.


Subject(s)
Interleukin-2/metabolism , Killer Cells, Natural/transplantation , Ovarian Neoplasms/therapy , Animals , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Humans , Immunotherapy , Injections, Intraperitoneal , Killer Cells, Natural/immunology , Luminescent Measurements , Mice , Ovarian Neoplasms/immunology , Xenograft Model Antitumor Assays
20.
Stem Cells Transl Med ; 2(4): 274-83, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23515118

ABSTRACT

Adoptive transfer of antitumor lymphocytes has gained intense interest in the field of cancer therapeutics over the past two decades. Human natural killer (NK) cells are a promising source of lymphocytes for anticancer immunotherapy. NK cells are part of the innate immune system and exhibit potent antitumor activity without need for human leukocyte antigen matching and without prior antigen exposure. Moreover, the derivation of NK cells from pluripotent stem cells could provide an unlimited source of lymphocytes for off-the-shelf therapy. To date, most studies on hematopoietic cell development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have used incompletely defined conditions and been on a limited scale. Here, we have used a two-stage culture system to efficiently produce NK cells from hESCs and iPSCs in the absence of cell sorting and without need for xenogeneic stromal cells. This novel combination of embryoid body formation using defined conditions and membrane-bound interleukin 21-expressing artificial antigen-presenting cells allows production of mature and functional NK cells from several different hESC and iPSC lines. Although different hESC and iPSC lines had varying efficiencies in hematopoietic development, all cell lines tested could produce functional NK cells. These methods can be used to generate enough cytotoxic NK cells to treat a single patient from fewer than 250,000 input hESCs/iPSCs. Additionally, this strategy provides a genetically amenable platform to study normal NK cell development and education in vitro.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Killer Cells, Natural/cytology , Neoplasms/therapy , Animals , Antigen-Presenting Cells/cytology , Cell Line , Cell Proliferation , Embryoid Bodies/cytology , Feeder Cells/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunotherapy , Mice , Neoplasms/immunology , Stromal Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL