Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Virol ; 96(9): e0038922, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35412347

ABSTRACT

Increasing cases of SARS-CoV-2 breakthrough infections from immunization with current spike protein-based COVID-19 vaccines highlight the need to develop alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins based on a novel vaccinia virus (VACV) ACAM2000 platform (rACAM2000). In this platform, the vaccinia virus host range and immunoregulatory gene E3L was deleted to make the virus attenuated and to enhance innate immune responses, and another host range gene, K3L, was replaced with a poxvirus ortholog gene, taterapox virus 037 (TATV037), to make virus replication competent in both hamster and human cells. Following a single intramuscular immunization, the rACAM2000 coexpressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and shorter recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titer, and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate, and further studies will investigate if the rACAM2000 vaccine candidate can induce a long-lasting immunity against infection by SARS-CoV-2 variants of concern. IMPORTANCE Continuous emergence of SARS-CoV-2 variants which cause breakthrough infection from the immunity induced by current spike protein-based COVID-19 vaccines highlights the need for new generations of vaccines that will induce long-lasting immunity against a wide range of the variants. To this end, we investigated the protective efficacy of the recombinant COVID-19 vaccine candidates based on a novel VACV ACAM2000 platform, in which an immunoregulatory gene, E3L, was deleted and both the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens were expressed. Thus, it is expected that the vaccine candidate we constructed should be more immunogenic and safer. In the initial study described in this work, we demonstrated that the vaccine candidate expressing both the S and N proteins is superior to the constructs expressing an individual protein (S or N) in protecting hamsters against SARS-CoV-2 challenge after a single-dose immunization, and further investigation against different SARS-CoV-2 variants will warrant future clinical evaluations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Coronavirus Nucleocapsid Proteins , Cricetinae , Humans , Immunization , Nucleocapsid Proteins/immunology , Phosphoproteins , SARS-CoV-2 , Smallpox Vaccine , Spike Glycoprotein, Coronavirus/immunology , Vaccinia virus
2.
Int J Syst Evol Microbiol ; 70(12): 6313-6322, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33118921

ABSTRACT

Twelve isolates recovered from 10 cystic fibrosis/other patient types and a variety of clinical sources, were referred to Canada's National Microbiology Laboratory over 7 years. These were assignable to the genus Pseudoxanthomonas but were unidentifiable to species level. Patients included five males and five females from two geographically separated provinces, ranging in age from 2 months to 84 years. In contrast, most Pseudoxanthomonas species described to date have been derived from water, plants or contaminated soils. By 16S rRNA gene sequencing, the patient strains had ≥99.4 % similarity to each other but only 97.73-98.29 % to their closest relatives, Pseudoxanthomonas spadix or Pseudoxanthomonas helianthi. Bacteria were studied by whole genome sequencing using average nucleotide identity by Blastn, digital DNA-DNA hybridization, average amino acid identity, core genome and single nucleotide variant analyses, MALDI-TOF, biochemical and cellular fatty acid analyses, and by antimicrobial susceptibility testing. Bacterial structures were assessed using scanning and transmission electron microscopy. Strains were strict aerobes, yellowish-pigmented, oxidative, non-motile, Gram-stain-negative bacilli and generally unable to reduce nitrate. Strains were susceptible to most of the antibiotics tested; some resistance was observed towards carbapenems, several cephems and uniformly to nitrofurantoin. The single taxon group observed by 16S rRNA gene sequencing was supported by whole genome sequencing; genomes ranged in size from 4.36 to 4.73 Mb and had an average G+C content of 69.12 mol%. Based on this study we propose the name Pseudoxanthomonas winnipegensis sp. nov. for this cluster. Pseudoxanthomonas spadix DSM 18855T, acquired for this study, was found to be non-motile phenotypically and by electron microscopy; we therefore propose the emendation of Pseudoxanthomonas spadix Young et al. 2007 to document that observation.


Subject(s)
Cystic Fibrosis/microbiology , Phylogeny , Xanthomonadaceae/classification , Adolescent , Aged , Aged, 80 and over , Bacterial Typing Techniques , Base Composition , Canada , Child , Child, Preschool , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Humans , Infant , Male , Middle Aged , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Xanthomonadaceae/isolation & purification
3.
Subcell Biochem ; 88: 73-94, 2018.
Article in English | MEDLINE | ID: mdl-29900493

ABSTRACT

Filoviruses are highly filamentous enveloped animal viruses that can cause severe haemorrhagic fevers. The filovirus ribonucleoprotein forms a highly organized double-layered helical nucleocapsid (NC) containing five different virally encoded proteins. The inner layer consists of NP, the RNA binding protein, complexed with the monopartite linear genome. A distinctive outer layer links individual NP subunits with bridges composed of VP24-VP35 heterodimers, which achieves condensation of the NP-RNA into tight helical coils. There are no vertical connections between the outer helical layers, explaining the flexibility of the NC and its ability to bend into tight curves without breaking the genomic RNA. These properties allow the formation of enveloped virions with varying polymorphisms, including single, linear, continuous, linked, comma-shaped and torroidal forms. Virion length is modular so that just one, or two or more genome copies may be present in each virion, producing polyploid particles. The matrix protein VP40, which drives budding and envelopment, is found in a layer adjacent to the inner cytoplasmic side of viral envelope and is arranged in a 5 nm lattice structure, but its exact symmetry is unclear. There is a constant low density gap between VP40 and the nucleocapsid, so that the latter is held rigidly centred on the long axis of the viral filament. This gap likely contains a region of flexible contacts between VP40 and the NC. The unique morphology of filoviruses may be related to high titre replication, their ease of transmission, and abilities to invade a wide range of host cells and tissues.


Subject(s)
Filoviridae , Genome, Viral/physiology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral , RNA-Binding Proteins , Animals , Filoviridae/genetics , Filoviridae/metabolism , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Int J Syst Evol Microbiol ; 65(Pt 6): 1959-1966, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25807976

ABSTRACT

Polyphasic taxonomic analysis was performed on a clinical isolate (NML 06-3099T) from a cystic fibrosis patient, including whole-genome sequencing, proteomics, phenotypic testing, electron microscopy, chemotaxonomy and a clinical investigation. Comparative whole-genome sequence analysis and multilocus sequence analysis (MLSA) between Tatumella ptyseos ATCC 33301T and clinical isolate NML 06-3099T suggested that the clinical isolate was closely related to, but distinct from, the species T. ptyseos. By 16S rRNA gene sequencing, the clinical isolate shared 98.7 % sequence identity with T. ptyseos ATCC 33301T. A concatenate of six MLSA loci (totalling 4500 bp) revealed < 93.9 % identity between T. ptyseos ATCC 33301T, other members of the genus and the clinical isolate. A whole-genome sequence comparison between NML 06-3099T and ATCC 33301T determined that the average nucleotide identity was 76.24 %. The overall DNA G+C content of NML 06-3099T was 51.27 %, consistent with members of the genus Tatumella. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis, NML 06-3099T had a genus-level match, but not a species-level match, to T. ptyseos. By shotgun proteomics, T. ptyseos ATCC 33301T and NML 06-3099T were found to have unique proteomes. The two strains had similar morphologies and multiple fimbriae, as observed by transmission electron microscopy, but were distinguishable by phenotypic testing. Cellular fatty acids found were typical for members of the Enterobacteriaceae. NML 06-3099T was susceptible to commonly used antibiotics. Based on these data, NML 06-3099T represents a novel species in the genus Tatumella, for which the name Tatumella saanichensis sp. nov. is proposed (type strain NML 06-3099T = CCUG 55408T = DSM 19846T).


Subject(s)
Cystic Fibrosis/microbiology , Enterobacteriaceae/classification , Phylogeny , Adolescent , Bacterial Typing Techniques , Base Composition , British Columbia , DNA, Bacterial/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Fatty Acids/chemistry , Humans , Male , Molecular Sequence Data , Multilocus Sequence Typing , Nucleic Acid Hybridization/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sputum/microbiology
5.
Sci Rep ; 12(1): 12149, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840757

ABSTRACT

Bacterial resistance to the antiseptic chlorhexidine (CHX), is a growing problem, recently shown to be caused by deleterious mutations to the phospholipid transport system component (mlaA) as well as efflux pump overexpression. Comparisons of CHX resistance mechanisms, such as porin deletions (ompCF), and over-expressed efflux pumps (acrB, qacE, aceI), are lacking and may be distinguishable using antiseptic rapid fluorescent dye testing assays. Using E. coli K-12 CHX adapted isolates (CHXR1), gene deletion mutants, and over-expressed transformants the phenotypes of these CHX resistance genes were compared using antimicrobial susceptibility tests (AST), rapid fluorescent propidium iodide dye-based membrane integrity assays (RFDMIA), and scanning electron microscopy (SEM). AST findings showed CHXR1, ΔacrB, ΔompCF, and transformants pCA24N-aceI and pCA24N-mlaA conferred greater (two to fourfold) MIC changes when compared to matched controls. Examination of these mutants/transformants using CHX RFDMIA showed that porin dual-deletions (ΔompCF) and mlaA alterations (ΔmlaA; pCA24N-mlaA, CHXR1) were distinguishable from controls. Results for over-expressed (pMS119EH-aceI) and deleted (ΔacrB) efflux pump RFDMIA could not be distinguished with propidium iodide, only with ethidium bromide, suggesting propidium iodide is better suited for detecting porin and mlaA associated CHX resistance mechanisms. SEM of CHXR1 and unadapted E. coli cells exposed to increasing CHX concentrations revealed that CHX does not visibly damage cell envelope integrity at any tested concentration but did identify elongated CHXR1 cells. ΔmlaA confers similar levels of CHX resistance as efflux overexpression and porin deletions, however, only outer membrane-altering porin and mlaA deletions can be reliably distinguished using RFDMIA.


Subject(s)
Anti-Infective Agents, Local , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Chlorhexidine/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fluorescent Dyes , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/genetics , Phenotype , Porins/genetics , Propidium
6.
Nat Struct Mol Biol ; 13(8): 751-2, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16845391

ABSTRACT

The emergence in 2003 of a new coronavirus (CoV) responsible for the atypical pneumonia termed severe acute respiratory syndrome (SARS) was a stark reminder that hitherto unknown viruses have the potential to cross species barriers to become new human pathogens. Here we describe the SARS-CoV 'spike' structure determined by single-particle cryo-EM, along with the docked atomic structures of the receptor-binding domain and prefusion core.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/ultrastructure , Viral Envelope Proteins/chemistry , Animals , Chlorocebus aethiops , Cryopreservation/methods , Epitopes/chemistry , Image Processing, Computer-Assisted , Membrane Fusion/physiology , Microscopy, Electron/methods , Models, Molecular , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Vero Cells/virology , Viral Envelope Proteins/metabolism , Virion/chemistry
7.
Front Microbiol ; 12: 628801, 2021.
Article in English | MEDLINE | ID: mdl-33746922

ABSTRACT

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are mediators of cell survival and pathogenesis by facilitating virulence factor dissemination and resistance to antimicrobials. Studies of OMV properties often focus on hypervesiculating Escherichia coli mutants that have increased OMV production when compared to their corresponding wild-type (WT) strains. Currently, two conventional techniques, ultracentrifugation (UC) and ultradiafiltration (UF), are used interchangeably to isolate OMVs, however, there is concern that each technique may inadvertently alter the properties of isolated OMVs during study. To address this concern, we compared two OMV isolation methods, UC and UF, with respect to final OMV quantities, size distributions, and morphologies using a hypervesiculating Escherichia coli K-12 ΔtolA mutant. Nanoparticle tracking analysis (NTA) indicated that UC techniques result in lower vesicle yields compared to UF. However, UF permitted isolation of OMVs with smaller average sizes than UC, highlighting a potential OMV isolation size bias by each technique. Cryo-transmission electron microscopy (cryo-TEM) visualization of isolated OMVs revealed distinct morphological differences between WT and ΔtolA OMVs, where ΔtolA OMVs isolated by either UC or UF method possessed a greater proportion of OMVs with two or more membranes. Proteomic OMV analysis of WT and ΔtolA OMVs confirmed that ΔtolA enhances inner plasma membrane carryover in multi-lamellar OMVs. This study demonstrates that UC and UF are useful techniques for OMV isolation, where UF may be preferable due to faster isolation, higher OMV yields and enrichment of smaller sized vesicles.

8.
Antiviral Res ; 196: 105206, 2021 12.
Article in English | MEDLINE | ID: mdl-34762975

ABSTRACT

Vaccination and administration of monoclonal antibody cocktails are effective tools to control the progression of infectious diseases and to terminate pandemics such as COVID-19. However, the emergence of SARS-CoV-2 mutants with enhanced transmissibility and altered antigenicity requires broad-spectrum therapies. Here we developed a panel of SARS-CoV-2 specific mouse monoclonal antibodies (mAbs), and characterized them based on ELISA, Western immunoblot, isotyping, and virus neutralization. Six neutralizing mAbs that exhibited high-affinity binding to SARS-CoV-2 spike protein were identified, and their amino acid sequences were determined by mass spectrometry. Functional assays confirmed that three mAbs, F461G11, F461G15, and F461G16 neutralized four variants of concern (VOC): B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta) These mAbs are promising candidates for COVID-19 therapy, and understanding their interactions with virus spike protein should support further vaccine and antibody development.


Subject(s)
Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Hemolytic Plaque Technique , Humans , Mice , SARS-CoV-2/immunology
9.
Front Mol Biosci ; 8: 659058, 2021.
Article in English | MEDLINE | ID: mdl-34095221

ABSTRACT

Chlorhexidine (CHX) is an essential medicine used as a topical antiseptic in skin and oral healthcare treatments. The widespread use of CHX has increased concerns regarding the development of antiseptic resistance in Enterobacteria and its potential impact on cross-resistance to other antimicrobials. Similar to other cationic antiseptics, resistance to CHX is believed to be driven by three membrane-based mechanisms: lipid synthesis/transport, altered porin expression, and increased efflux pump activity; however, specific gene and protein alterations associated with CHX resistance remain unclear. Here, we adapted Escherichia coli K-12 BW25113 to increasing concentrations of CHX to determine what phenotypic, morphological, genomic, transcriptomic, and proteomic changes occurred. We found that CHX-adapted E. coli isolates possessed no cross-resistance to any other antimicrobials we tested. Scanning electron microscopy imaging revealed that CHX adaptation significantly altered mean cell widths and lengths. Proteomic analyses identified changes in the abundance of porin OmpF, lipid synthesis/transporter MlaA, and efflux pump MdfA. Proteomic and transcriptomic analyses identified that CHX adaptation altered E. coli transcripts and proteins controlling acid resistance (gadE, cdaR) and antimicrobial stress-inducible pathways Mar-Sox-Rob, stringent response systems. Whole genome sequencing analyses revealed that all CHX-resistant isolates had single nucleotide variants in the retrograde lipid transporter gene mlaA as well as the yghQ gene associated with lipid A transport and synthesis. CHX resistant phenotypes were reversible only when complemented with a functional copy of the mlaA gene. Our results highlight the importance of retrograde phospholipid transport and stress response systems in CHX resistance and the consequences of prolonged CHX exposure.

10.
Sci Rep ; 10(1): 20543, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239659

ABSTRACT

Biocides such as quaternary ammonium compounds (QACs) are potentially important contributors towards bacterial antimicrobial resistance development, however, their contributions are unclear due to a lack of internationally recognized biocide testing standards. Methods to detect QAC tolerance are limited to laborious traditional antimicrobial susceptibility testing (AST) methods. Here, we developed a rapid fluorescent dye-based membrane impermeant assay (RFDMIA) to discriminate QAC susceptibility among Gram-negative Enterobacterales and Pseudomonadales species. RFDMIA uses a membrane impermeant fluorescent dye, propidium iodide, in a 30-min 96-well fluorescent microplate-based assay where cell suspensions are exposed to increasing QAC concentrations. Our results demonstrate that RFDMIA can discriminate between QAC-susceptible and QAC-adapted Escherichia coli tolerant phenotypes and predict benzalkonium and cetrimide tolerance in all species tested except for intrinsically fluorescent Pseudomonas aeruginosa. RFDMIA identified a close association to minimum inhibitory concentration values determined by broth microdilution AST and increasing fluorescent dye emission values. RFDMIA emission values and scanning electron microscopy results also suggest that CET-adapted E. coli isolates have a CET dependence, where cells require sub-inhibitory CET concentrations to maintain bacilliform cell integrity. Overall, this study generates a new, rapid, sensitive fluorescent assay capable of detecting QAC-susceptible Gram-negative bacteria phenotypes and cell membrane perturbations.


Subject(s)
Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests/methods , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents, Local/pharmacology , Bacteria/metabolism , Bacterial Proteins/metabolism , Benzalkonium Compounds/pharmacology , Disinfectants/pharmacology , Fluorescent Dyes/pharmacology , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism
11.
Mol Biol Cell ; 17(12): 5063-74, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16987964

ABSTRACT

Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.


Subject(s)
Escherichia coli/ultrastructure , Microscopy, Electron, Scanning Transmission/methods , Signal Recognition Particle/ultrastructure , Fluorescence Resonance Energy Transfer , Microscopy, Energy-Filtering Transmission Electron , Models, Molecular , Protein Structure, Tertiary , Protein Subunits/chemistry , RNA, Bacterial/chemistry , Ribosomes/metabolism , Solutions
12.
Appl Environ Microbiol ; 74(23): 7451-3, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18849447

ABSTRACT

Food poisoning laboratories identify Bacillus cereus using routine methods that may not differentiate all Bacillus cereus group species. We recharacterized Bacillus food-poisoning strains from 39 outbreaks and identified B. cereus in 23 outbreaks, B. thuringiensis in 4, B. mycoides in 1, and mixed strains of Bacillus in 11 outbreaks.


Subject(s)
Bacillus/classification , Bacillus/isolation & purification , Disease Outbreaks , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Adolescent , Adult , Aged , Bacterial Proteins/genetics , British Columbia/epidemiology , Child , Child, Preschool , DNA, Bacterial/genetics , Genotype , Humans , Middle Aged , Polymerase Chain Reaction
13.
Sci Rep ; 7: 46374, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397863

ABSTRACT

We present the structure of the surface Ebola virus (EBOV) trimeric glycoprotein (GP) spike at 11 Å resolution, in situ within the viral plasma membrane of purified virus particles. GP functions in cellular attachment, endosomal entry, and membrane fusion to initiate infection, and is a key therapeutic target. Nevertheless, only about half of the GP molecule has yet been solved to atomic resolution, excluding the mucin-like and transmembrane domains, and some of the glycans. Fitting of the atomic resolution X-ray data from expressed, truncated deletion constructs within our 11 Å structure of the entire molecule demonstrates the relationship between the GP1-GP2 domains, the mucin-like and transmembrane domains, and the bilaminar lipid envelope. We show that the mucin-like domain covers the glycan cap and partially occludes the receptor binding sites prior to proteolytic cleavage. Our structure is also consistent with key antibody neutralisation sites on GP being accessible prior to proteolysis. Based on the findings of us and others, GP-mediated binding may create an angle of 18 degrees between the planes of viral and endosomal membranes.


Subject(s)
Ebolavirus/metabolism , Viral Envelope Proteins/metabolism , Virion/metabolism , Hemorrhagic Fever, Ebola/virology , Humans , Models, Molecular , Protein Binding , Protein Conformation
14.
Viruses ; 9(10)2017 10 14.
Article in English | MEDLINE | ID: mdl-29036922

ABSTRACT

The Zika virus (ZIKV) epidemic is an ongoing public health concern. ZIKV is a flavivirus reported to be associated with microcephaly, and recent work in animal models demonstrates the ability of the virus to cross the placenta and affect fetal brain development. Recent findings suggest that the virus preferentially infects neural stem cells and thereby deregulates gene expression, cell cycle progression, and increases cell death. However, neuronal stem cells are not the only brain cells that are susceptible to ZIKV and infection of other brain cells may contribute to disease progression. Herein, we characterized ZIKV replication in astrocytes, and profiled temporal changes in host microRNAs (miRNAs) and transcriptomes during infection. We observed the deregulation of numerous processes known to be involved in flavivirus infection, including genes involved in the unfolded protein response pathway. Moreover, a number of miRNAs were upregulated, including miR-30e-3p, miR-30e-5p, and, miR-17-5p, which have been associated with other flavivirus infections. This study highlights potential miRNAs that may be of importance in ZIKV pathogenesis.


Subject(s)
Astrocytes/metabolism , Astrocytes/virology , MicroRNAs/genetics , RNA, Messenger/genetics , Zika Virus/pathogenicity , Animals , Astrocytes/pathology , Cell Line , Female , Gene Expression , Humans , Microarray Analysis , Pregnancy , Up-Regulation , Virus Replication , Zika Virus/physiology
15.
Sci Rep ; 6: 26516, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27212232

ABSTRACT

Despite being an excellent tool for investigating ultrastructure, scanning electron microscopy (SEM) is less frequently used than transmission electron microscopy for microbes such as viruses or bacteria. Here we describe rapid methods that allow SEM imaging of fully hydrated, unfixed microbes without using conventional sample preparation methods. We demonstrate improved ultrastructural preservation, with greatly reduced dehydration and shrinkage, for specimens including bacteria and viruses such as Ebola virus using infiltration with ionic liquid on conducting filter substrates for SEM.


Subject(s)
Communicable Diseases/diagnosis , Microscopy, Electron, Scanning/methods , Viruses/ultrastructure , Animals , Cell Line , Communicable Diseases/virology , Ebolavirus/ultrastructure , Humans , Ionic Liquids , Specimen Handling/instrumentation , Vaccinia virus/ultrastructure
16.
Sci Rep ; 5: 9505, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25820944

ABSTRACT

Biological threats posed by pathogens such as Ebola virus must be quickly diagnosed, while protecting the safety of personnel. Scanning electron microscopy and microanalysis requires minimal specimen preparation and can help to identify hazardous agents or substances. Here we report a compact biosafety system for rapid imaging and elemental analysis of specimens, including powders, viruses and bacteria, which is easily transportable to the site of an incident.


Subject(s)
Microbiological Techniques/instrumentation , Microbiological Techniques/methods , Microscopy, Electron, Scanning/methods , Mobile Health Units , Safety , Humans
17.
Viruses ; 6(9): 3458-71, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25243370

ABSTRACT

Diagnostic electron microscopy for infectious diseases has the advantage that "everything" in the specimen can be observed, without a priori knowledge of the likely identity of the microorganisms present in the sample. The classical specimen preparation method used employs a droplet of sample, which allows particles to adsorb to a support film, and is subsequently negative stained. This "grid on drop" procedure has a sensitivity range of approximately 106 viruses per mL if no enrichment procedures are used. In the current investigation we present a novel use of filtration that allows us to detect viruses at concentrations as low as 102 viruses per mL. We present here methods based on filtration, in which total virus, and not virus concentration, is the limiting factor for detection. We show that filtration is more sensitive than conventional negative staining and can detect as few as 5 × 103 particles per sample.


Subject(s)
Filtration/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Animals , Bacteriophages/ultrastructure , Cell Line , Chlorocebus aethiops , Cricetinae , Leptospira/ultrastructure , Vero Cells , Viruses/ultrastructure
18.
Trends Microbiol ; 21(11): 583-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24011860

ABSTRACT

Viruses of the Mononegavirales have helical nucleocapsids containing a single-stranded negative-sense RNA genome complexed with the nucleoprotein and several other virus-encoded proteins. This RNA-protein complex acts as the template for replication and transcription during infection. Recent structural data has advanced our understanding of how these functions are achieved in filoviruses, which include dangerous pathogens such as Ebola virus. Polyploid filoviruses package multiple genome copies within strikingly long filamentous viral envelopes, which must be flexible to avoid breakage of the 19kb non-segmented genomic RNA. We review how the structure of filoviruses and paramyxoviruses permits this morphological flexibility in comparison to rhabdoviruses that have short, bullet-shaped virions with relatively rigid envelopes.


Subject(s)
Filoviridae/physiology , Filoviridae/ultrastructure , Macromolecular Substances/metabolism , Nucleocapsid/metabolism , Rhabdoviridae/physiology , Rhabdoviridae/ultrastructure , Virus Assembly , Models, Biological , Models, Molecular
19.
PLoS One ; 8(1): e53757, 2013.
Article in English | MEDLINE | ID: mdl-23349739

ABSTRACT

BACKGROUND: Clostridium difficile are gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15-35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. CONCLUSIONS/SIGNIFICANCE: This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Drug Resistance, Bacterial/drug effects , Metronidazole/pharmacology , Clostridioides difficile/genetics , Clostridioides difficile/ultrastructure , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple/drug effects , Genomics , Humans , Phenotype , Polymorphism, Single Nucleotide
20.
PLoS One ; 8(2): e57339, 2013.
Article in English | MEDLINE | ID: mdl-23437374

ABSTRACT

Serotyping is the long-standing gold standard method to determine E. coli H antigens; however, this method requires a panel of H-antigen specific antibodies and often culture-based induction of the H-antigen flagellar motility. In this study, a rapid and accurate method to isolate and identify the Escherichia coli (E. coli) H flagellar antigen was developed using membrane filtration and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Flagella were isolated from pure culture, digested with trypsin, and then subjected to LC-MS/MS using one of two systems (Agilent-nano-LC-QSTAR XL or Proxeon-nano-LC-LTQ-Orbitrap XL). The resulting peptide sequence data were searched against a custom E. coli flagella/H antigen database. This approach was evaluated using flagella isolated from reference E. coli strains representing all 53 known H antigen types and 41 clinical E. coli strains. The resulting LC-MS/MS classifications of H antigen types (MS-H) were concordant with the known H serogroup for all 53 reference types, and of 41 clinical isolates tested, 38 (92.7%) were concordant with the known H serogroup. MS-H clearly also identified two clinical isolates (4.9%) that were untypeable by serotyping. Notably, successful detection and classification of flagellar antigens with MS-H did not generally require induction of motility, establishing this proteomic approach as more rapid and cost-effective than traditional methods, while providing equitable specificity for typing E. coli H antigens.


Subject(s)
Antigens, Bacterial/isolation & purification , Escherichia coli/chemistry , Flagella/chemistry , Proteomics/methods , Serotyping/methods , Antigens, Bacterial/classification , Antigens, Bacterial/genetics , Chromatography, Liquid , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Filtration , Humans , Membranes, Artificial , Sensitivity and Specificity , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL