Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Proc Natl Acad Sci U S A ; 110(19): 7772-7, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23610441

ABSTRACT

Proper placement of epigenetic marks on DNA and histones is fundamental to normal development, and perturbations contribute to a variety of disease states. Combinations of marks act together to control gene expression; therefore, detecting their colocalization is important, but because of technical challenges, such measurements are rarely reported. Instead, measurements of epigenetic marks are typically performed one at a time in a population of cells, and their colocalization is inferred by association. Here, we describe a single-molecule analytical approach that can perform direct detection of multiple epigenetic marks simultaneously and use it to identify mechanisms coordinating placement of three gene silencing marks, trimethylated histone H3 lysine 9, lysine 27 (H3K9me3, H3K27me3), and cytosine methylation (mC), in the normal and cancer genome. We show that H3K9me3 and mC are present together on individual chromatin fragments in mouse embryonic stem cells and that half of the H3K9me3 marks require mC for their placement. In contrast, mC and H3K27me3 coincidence is rare, and in fact, mC antagonizes H3K27me3 in both embryonic stem cells and primary mouse fibroblasts, indicating this antagonism is shared among primary cells. However, upon immortalization or tumorigenic transformation of mouse fibroblasts, mC is required for complete H3K27me3 placement. Importantly, in human promyelocytic cells, H3K27me3 is also dependent on mC. Because aberrant placement of gene silencing marks at tumor suppressor genes contributes to tumor progression, the improper dependency of H3K27me3 by mC in immortalized cells is likely to be fundamental to cancer. Our platform can enable other studies involving coordination of epigenetic marks and leverage efforts to discover disease biomarkers and epigenome-modifying drugs.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histones/chemistry , Animals , Cell Line , Cell Line, Tumor , Chromatin/metabolism , Cytosine/chemistry , Epigenomics , Fibroblasts/metabolism , Gene Silencing , Humans , Lysine/genetics , Methylation , Mice , Protein Binding
2.
Proc Natl Acad Sci U S A ; 109(22): 8477-82, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22586076

ABSTRACT

Epigenetic modifications, such as DNA and histone methylation, are responsible for regulatory pathways that affect disease. Current epigenetic analyses use bisulfite conversion to identify DNA methylation and chromatin immunoprecipitation to collect molecules bearing a specific histone modification. In this work, we present a proof-of-principle demonstration for a new method using a nanofluidic device that combines real-time detection and automated sorting of individual molecules based on their epigenetic state. This device evaluates the fluorescence from labeled epigenetic modifications to actuate sorting. This technology has demonstrated up to 98% accuracy in molecule sorting and has achieved postsorting sample recovery on femtogram quantities of genetic material. We have applied it to sort methylated DNA molecules using simultaneous, multicolor fluorescence to identify methyl binding domain protein-1 (MBD1) bound to full-duplex DNA. The functionality enabled by this nanofluidic platform now provides a workflow for color-multiplexed detection, sorting, and recovery of single molecules toward subsequent DNA sequencing.


Subject(s)
DNA Methylation , DNA/genetics , Microfluidic Analytical Techniques/methods , Nanotechnology/methods , DNA/analysis , DNA/metabolism , DNA-Binding Proteins/metabolism , Fluorescence , Humans , Microfluidic Analytical Techniques/instrumentation , Microscopy, Confocal , Nanotechnology/instrumentation , Protein Binding , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Time Factors , Transcription Factors/metabolism
3.
Biochemistry ; 52(41): 7170-83, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24053279

ABSTRACT

Understanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein-DNA and protein-protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions. This work also summarizes other related single-molecule studies of bioinorganic systems and provides an outlook toward single-molecule imaging of metalloprotein functions in living cells.


Subject(s)
DNA-Binding Proteins/metabolism , Metallochaperones/metabolism , Metals/metabolism , Animals , DNA-Binding Proteins/chemistry , Fluorescence Resonance Energy Transfer , Humans , Metallochaperones/chemistry , Metallochaperones/genetics
4.
Anal Chem ; 85(5): 2754-9, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23363062

ABSTRACT

Graphene's suite of useful properties makes it of interest for use in biosensors. However, graphene interacts strongly with hydrophobic components of biomolecules, potentially altering their conformation and disrupting their biological activity. We have immobilized the protein Concanavalin A onto a self-assembled monolayer of multivalent tripodal molecules on single-layer graphene. We used a quartz crystal microbalance (QCM) to show that tripod-bound Concanavalin A retains its affinity for polysaccharides containing α-D-glucopyrannosyl groups as well as for the α-D-mannopyranosyl groups located on the cell wall of Bacillus subtilis. QCM measurements on unfunctionalized graphene indicate that adsorption of Concanavalin A onto graphene is accompanied by near-complete loss of these functions, suggesting that interactions with the graphene surface induce deleterious structural changes to the protein. Given that Concanavalin A's tertiary structure is thought to be relatively robust, these results suggest that other proteins might also be denatured upon adsorption onto graphene, such that the graphene-biomolecule interface must be considered carefully. Multivalent tripodal binding groups address this challenge by anchoring proteins without loss of function and without disrupting graphene's desirable electronic structure.


Subject(s)
Concanavalin A/chemistry , Concanavalin A/metabolism , Graphite/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Adsorption , Bacillus subtilis/cytology , Canavalia/chemistry , Cell Wall/metabolism , Cells, Immobilized/metabolism , Lipopolysaccharides/metabolism , Teichoic Acids/metabolism
5.
J Am Chem Soc ; 134(21): 8934-43, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22578168

ABSTRACT

As part of intracellular copper trafficking pathways, the human copper chaperone Hah1 delivers Cu(+) to the Wilson's Disease Protein (WDP) via weak and dynamic protein-protein interactions. WDP contains six homologous metal binding domains (MBDs) connected by flexible linkers, and these MBDs all can receive Cu(+) from Hah1. The functional roles of the MBD multiplicity in Cu(+) trafficking are not well understood. Building on our previous study of the dynamic interactions between Hah1 and the isolated fourth MBD of WDP, here we study how Hah1 interacts with MBD34, a double-domain WDP construct, using single-molecule fluorescence resonance energy transfer (smFRET) combined with vesicle trapping. By alternating the positions of the smFRET donor and acceptor, we systematically probed Hah1-MBD3, Hah1-MBD4, and MBD3-MBD4 interaction dynamics within the multidomain system. We found that the two interconverting interaction geometries were conserved in both intermolecular Hah1-MBD and intramolecular MBD-MBD interactions. The Hah1-MBD interactions within MBD34 are stabilized by an order of magnitude relative to the isolated single-MBDs, and thermodynamic and kinetic evidence suggest that Hah1 can interact with both MBDs simultaneously. The enhanced interaction stability of Hah1 with the multi-MBD system, the dynamic intramolecular MBD-MBD interactions, and the ability of Hah1 to interact with multiple MBDs simultaneously suggest an efficient and versatile mechanism for the Hah1-to-WDP pathway to transport Cu(+).


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Copper/metabolism , Adenosine Triphosphatases/chemistry , Biological Transport , Cation Transport Proteins/chemistry , Copper-Transporting ATPases , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Stability , Protein Structure, Tertiary
6.
Anal Chem ; 83(21): 8073-7, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21981444

ABSTRACT

We present a method for profiling the 5-methyl cytosine distribution on single DNA molecules. Our method combines soft-lithography and molecular elongation to form ordered arrays estimated to contain more than 250 000 individual DNA molecules immobilized on a solid substrate. The methylation state of the DNA is detected and mapped by binding of fluorescently labeled methyl-CpG binding domain peptides to the elongated dsDNA molecules and imaging of their distribution. The stretched molecules are fixed in their extended configuration by adsorption onto the substrate so analysis can be performed with high spatial resolution and signal averaging. We further prove this technique allows imaging of DNA molecules with different methylation states.


Subject(s)
Bacteriophage lambda/genetics , DNA Methylation , DNA/analysis , DNA/genetics , Epigenomics , CpG Islands , Cytosine/chemistry , DNA Footprinting , DNA-Binding Proteins/metabolism , High-Throughput Screening Assays , Image Processing, Computer-Assisted , Oligonucleotide Array Sequence Analysis
7.
Nat Prod Rep ; 27(5): 757-67, 2010 May.
Article in English | MEDLINE | ID: mdl-20442963

ABSTRACT

To maintain normal metal metabolism, organisms utilize dynamic cooperation of many biomacromolecules for regulating metal ion concentrations and bioavailability. How these biomacromolecules work together to achieve their functions is largely unclear. For example, how do metalloregulators and DNA interact dynamically to control gene expression to maintain healthy cellular metal level? And how do metal transporters collaborate dynamically to deliver metal ions? Here we review recent advances in studying the dynamic interactions of macromolecular machineries for metal regulation and transport at the single-molecule level: (1) The development of engineered DNA Holliday junctions as single-molecule reporters for metalloregulator-DNA interactions, focusing onMerR-family regulators. And (2) The development of nanovesicle trapping coupled with single molecule fluorescence resonance energy transfer (smFRET) for studying weak, transient interactions between the copper chaperone Hah1 and the Wilson disease protein. We describe the methodologies,the information content of the single-molecule results, and the insights into the biological functions of the involved biomacromolecules for metal regulation and transport. We also discuss remaining challenges from our perspective.


Subject(s)
Metals/metabolism , Models, Molecular , Adenosine Triphosphatases/metabolism , Biological Transport , Cation Transport Proteins/metabolism , Copper/metabolism , Copper-Transporting ATPases , DNA/metabolism , Homeostasis/physiology , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
8.
Biophys J ; 97(3): 844-52, 2009 Aug 05.
Article in English | MEDLINE | ID: mdl-19651042

ABSTRACT

To maintain normal metal metabolism, bacteria use metal-sensing metalloregulators to control transcription of metal resistance genes. Depending on their metal-binding states, the MerR-family metalloregulators change their interactions with DNA to suppress or activate transcription. To understand their functions fundamentally, we study how CueR, a Cu(1+)-responsive MerR-family metalloregulator, interacts with DNA, using an engineered DNA Holliday junction (HJ) as a protein-DNA interaction reporter in single-molecule fluorescence resonance energy transfer measurements. By analyzing the single-molecule structural dynamics of the engineered HJ in the presence of various concentrations of both apo- and holo-CueR, we show how CueR interacts with the two conformers of the engineered HJ, forming variable protein-DNA complexes at different protein concentrations and changing the HJ structures. We also show how apo- and holo-CueR differ in their interactions with DNA, and discuss their similarities and differences with other MerR-family metalloregulators. The surprising finding that holo-CueR binds more strongly to DNA than to apo-CueR suggests functional differences among MerR-family metalloregulators, in particular in their mechanisms of switching off gene transcription after activation. The study also corroborates the general applicability of engineered HJs as single-molecule reporters for protein-DNA interactions, which are fundamental processes in gene replication, transcription, recombination, and regulation.


Subject(s)
DNA, Cruciform/chemistry , Escherichia coli Proteins/chemistry , Trans-Activators/chemistry , Base Sequence , DNA, Cruciform/genetics , Escherichia coli , Escherichia coli Proteins/isolation & purification , Fluorescence Polarization , Fluorescence Resonance Energy Transfer , Kinetics , Molecular Sequence Data , Nucleic Acid Conformation , Trans-Activators/isolation & purification
9.
PLoS One ; 13(2): e0191520, 2018.
Article in English | MEDLINE | ID: mdl-29432426

ABSTRACT

Single cell whole genome amplification is susceptible to amplification biases that impact the accuracy of single cell sequencing data. To address this, we have developed a microfluidic device for the isolation and purification of genomic DNA from individual cells. The device uses a micropillar array to physically capture single cells and its chromosomal DNA upon extraction. The extracted DNA is immobilized within the micropillar array in a way that allows isothermal amplification. In this system, whole genome amplification of the single cell is carried out under a continual fluid flow within the microfluidic channel. We have demonstrated the process for amplification of individual human cancer cell genomes from the HeLa cell line. By sampling select gene loci along the human genome and performing whole exome sequencing, we demonstrate improved genome coverage and reduced amplification bias compared to amplification of single cells deposited in wells by fluorescence activated cell sorting.


Subject(s)
Genome, Human , Lab-On-A-Chip Devices , Polymerase Chain Reaction/methods , Flow Cytometry , HeLa Cells , Humans
11.
Lab Chip ; 12(22): 4848-54, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23018789

ABSTRACT

We describe a microfluidic device for the extraction, purification and stretching of human chromosomal DNA from single cells. A two-dimensional array of micropillars in a microfluidic polydimethylsiloxane channel was designed to capture a single human cell. Megabase-long DNA strands released from the cell upon lysis are trapped in the micropillar array and stretched under optimal hydrodynamic flow conditions. Intact chromosomal DNA is entangled in the array, while other cellular components are washed from the channel. To demonstrate the entrapment principle, a single chromosome was hybridized to whole chromosome paints, and imaged by fluorescence microscopy. DNA extracted from a single cell and small cell populations (less than 100) was released from the device by restriction endonuclease digestion under continuous flow and collected for off-chip analysis. Quantification of the extracted material reveals that the microdevice efficiently extracts essentially all chromosomal DNA. The device described represents a novel platform to perform a variety of analyses on chromosomal DNA at the single cell level.


Subject(s)
Chemical Fractionation/instrumentation , Chromosomes, Human/genetics , DNA/analysis , DNA/isolation & purification , Microfluidic Analytical Techniques/instrumentation , Single-Cell Analysis/instrumentation , Cell Line, Tumor , DNA/chemistry , Humans , Nucleic Acid Conformation , Nucleic Acid Hybridization
12.
Faraday Discuss ; 148: 71-82; discussion 97-108, 2011.
Article in English | MEDLINE | ID: mdl-21322478

ABSTRACT

Metallochaperones undertake specific interactions with their target proteins to deliver metal ions inside cells. Understanding how these protein interactions are coupled with the underlying metal transfer process is important, but challenging because they are weak and dynamic. Here we use a nanovesicle trapping scheme to enable single-molecule FRET measurements of the weak, dynamic interactions between the copper chaperone Hahl and the fourth metal binding domain (MBD4) of WDP. By monitoring the behaviors of single interacting pairs, we visualize their interactions in real time in both the absence and the presence of various equivalents of Cu(1+). Regardless of the proteins' metallation state, we observe multiple, interconverting interaction complexes between Hah1 and MBD4. Within our experimental limit, the overall interaction geometries of these complexes appear invariable, but their stabilities are dependent on the proteins' metallation state. In apo-holo Hah1-MBD4 interactions, the complexes are stabilized relative to that observed in the apo-apo interactions. This stabilization is indiscernible when Hah1's Cu(1+)-binding is eliminated or when both proteins have Cu(1+) loaded. The nature of this Cu(1+)-induced complex stabilization and of the interaction complexes are discussed. These Cu(1+)-induced effects on the Hah1-MBD4 interactions provide a step toward understanding how the dynamic protein interactions of copper chaperones are coupled with their metal transfer function.


Subject(s)
Copper/chemistry , Metallochaperones/chemistry , Fluorescence Resonance Energy Transfer , Magnetic Resonance Spectroscopy
13.
Methods Enzymol ; 472: 41-60, 2010.
Article in English | MEDLINE | ID: mdl-20580959

ABSTRACT

Protein-protein interactions are fundamental biological processes. While strong protein interactions are amenable to many characterization techniques including crystallography, weak protein interactions are challenging to study because of their dynamic nature. Single-molecule fluorescence resonance energy transfer (smFRET) can monitor dynamic protein interactions in real time, but are generally limited to strong interacting pairs because of the low concentrations needed for single-molecule detection. Here, we describe a nanovesicle trapping approach to enable smFRET study of weak protein interactions at high effective concentrations. We describe the experimental procedures, summarize the application in studying the weak interactions between intracellular copper transporters, and detail the single-molecule kinetic analysis of bimolecular interactions involving three states. Both the experimental approach and the theoretical analysis are generally applicable to studying many other biological processes at the single-molecule level.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Nanostructures/chemistry , Proteins , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Lipids/chemistry , Models, Biological , Particle Size , Proteins/chemistry , Proteins/metabolism
14.
J Am Chem Soc ; 129(41): 12461-7, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-17880214

ABSTRACT

Protein-DNA interactions are essential for gene maintenance, replication, and expression. Characterizing how proteins interact with and change the structure of DNA is crucial in elucidating the mechanisms of protein function. Here, we present a novel and generalizable method of using engineered DNA Holliday junctions (HJs) that contain specific protein-recognition sequences to report protein-DNA interactions in single-molecule FRET measurements, utilizing the intrinsic structural dynamics of HJs. Because the effects of protein binding are converted to the changes in the structure and dynamics of HJs, protein-DNA interactions that involve small structural changes of DNA can be studied. We apply this method to investigate how the MerR-family regulator PbrR691 interacts with DNA for transcriptional regulation. Both apo- and holo-PbrR691 bind the stacked conformers of the engineered HJ, change their structures, constrain their conformational distributions, alter the kinetics, and shift the equilibrium of their structural dynamics. The information obtained maps the potential energy surfaces of HJ before and after PbrR691 binding and reveals the protein actions that force DNA structural changes for transcriptional regulation. The ability of PbrR691 to bind both HJ conformers and still allow HJ structural dynamics also informs about its conformational flexibility that may have significance for its regulatory function. This method of using engineered HJs offers quantification of the changes both in structure and in dynamics of DNA upon protein binding and thus provides a new tool to elucidate the correlation of structure, dynamics, and function of DNA-binding proteins.


Subject(s)
DNA, Cruciform/genetics , DNA, Cruciform/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Genes, Reporter/genetics , Base Sequence , Cell Surface Extensions , DNA, Cruciform/chemistry , DNA-Binding Proteins/classification , Genetic Engineering , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL