Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782470

ABSTRACT

Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex. Results show that the lactate rise in the barrel cortex upon whisker stimulation is abolished when either transporter is down-regulated. Under the same paradigm, the BOLD response is prevented in all MCT2 down-regulated rats, while about half of the MCT4 down-regulated rats exhibited a loss of the BOLD response. Interestingly, MCT4 down-regulated animals showing no BOLD response were rescued by peripheral lactate infusion, while this treatment had no effect on MCT2 down-regulated rats. When animals were tested in a novel object recognition task, MCT2 down-regulated animals were impaired in the textured but not in the visual version of the task. For MCT4 down-regulated animals, while all animal succeeded in the visual task, half of them exhibited a deficit in the textured task, a similar segregation into two groups as observed for BOLD experiments. Our data demonstrate that lactate shuttling between astrocytes and neurons is essential to give rise to both neurometabolic and neurovascular couplings, which form the basis for the detection of brain activation by functional brain imaging techniques. Moreover, our results establish that this metabolic cooperation is required to sustain behavioral performance based on cortical activation.


Subject(s)
Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Monocarboxylic Acid Transporters/metabolism , Vibrissae/physiology , Animals , Astrocytes/metabolism , Learning , Magnetic Resonance Spectroscopy , Male , Memory , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Neurons/metabolism , Oxygen Saturation , Rats , Rats, Wistar
2.
Sci Rep ; 14(1): 4541, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402370

ABSTRACT

The evaluation of the efficacy of a drug is a fundamental step in the development of new treatments or in personalized therapeutic strategies and patient management. Ideally, this evaluation should be rapid, possibly in real time, easy to perform and reliable. In addition, it should be associated with as few adverse effects as possible for the patient. In this study, we present a device designed to meet these goals for assessing therapeutic response. This theranostic device is based on the use of magnetic resonance imaging and spectroscopy for the diagnostic aspect and on the application of the convection-enhanced delivery technique for the therapeutic aspect. The miniaturized device is implantable and can be used in vivo in a target tissue. In this study, the device was applied to rodent glioma models with local administration of choline kinase inhibitor and acquisition of magnetic resonance images and spectra at 7 Tesla. The variations in the concentration of key metabolites measured by the device during the administration of the molecules demonstrate the relevance of the approach and the potential of the device.


Subject(s)
Brain Neoplasms , Drug Delivery Systems , Humans , Pharmaceutical Preparations , Drug Delivery Systems/methods , Precision Medicine , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Magnetic Resonance Imaging
3.
Nutrients ; 14(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35215424

ABSTRACT

Polyphenols are natural compounds with promising prophylactic and therapeutic applications. However, their methods of extraction, using organic solvents, may prove to be unsuitable for daily consumption or for certain medical indications. Here, we describe the neuroprotective effects of grape polyphenols extracted in an eco-sustainable manner in a rat model of neonatal hypoxia-ischemia (NHI). Polyphenols (resveratrol, pterostilben and viniferin) were obtained using a subcritical water extraction technology to avoid organic solvents and heavy metals associated with chemical synthesis processes. A resveratrol or a polyphenol cocktail were administered to pregnant females at a nutritional dose and different time windows, prior to induction of NHI in pups. Reduced brain edema and lesion volumes were observed in rat pups whose mothers were supplemented with polyphenols. Moreover, the preservation of motor and cognitive functions (including learning and memory) was evidenced in the same animals. Our results pave the way to the use of polyphenols to prevent brain lesions and their associated deficits that follow NHI, which is a major cause of neonatal death and disabilities.


Subject(s)
Hypoxia-Ischemia, Brain , Neuroprotective Agents , Vitis , Animals , Animals, Newborn , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/prevention & control , Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Polyphenols/pharmacology , Polyphenols/therapeutic use , Pregnancy , Rats , Vitis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL