Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Glia ; 72(10): 1893-1914, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39023138

ABSTRACT

Myelin Basic Protein (MBP) is essential for both elaboration and maintenance of CNS myelin, and its reduced accumulation results in hypomyelination. How different Mbp mRNA levels affect myelin dimensions across the lifespan and how resident glial cells may respond to such changes are unknown. Here, to investigate these questions, we used enhancer-edited mouse lines that accumulate Mbp mRNA levels ranging from 8% to 160% of wild type. In young mice, reduced Mbp mRNA levels resulted in corresponding decreases in Mbp protein accumulation and myelin sheath thickness, confirming the previously demonstrated rate-limiting role of Mbp transcription in the control of initial myelin synthesis. However, despite maintaining lower line specific Mbp mRNA levels into old age, both MBP protein levels and myelin thickness improved or fully normalized at rates defined by the relative Mbp mRNA level. Sheath length, in contrast, was affected only when mRNA levels were very low, demonstrating that sheath thickness and length are not equally coupled to Mbp mRNA level. Striking abnormalities in sheath structure also emerged with reduced mRNA levels. Unexpectedly, an increase in the density of all glial cell types arose in response to reduced Mbp mRNA levels. This investigation extends understanding of the role MBP plays in myelin sheath elaboration, architecture, and plasticity across the mouse lifespan and illuminates a novel axis of glial cell crosstalk.


Subject(s)
Myelin Basic Protein , Myelin Sheath , Neuroglia , RNA, Messenger , Animals , Myelin Basic Protein/metabolism , Myelin Basic Protein/genetics , Myelin Sheath/metabolism , Myelin Sheath/genetics , RNA, Messenger/metabolism , Neuroglia/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Male
2.
Ann Neurol ; 91(1): 48-65, 2022 01.
Article in English | MEDLINE | ID: mdl-34741343

ABSTRACT

OBJECTIVES: In the premature newborn, perinatal inflammation mediated by microglia contributes significantly to neurodevelopmental injuries including white matter injury (WMI). Brain inflammation alters development through neuroinflammatory processes mediated by activation of homeostatic microglia toward a pro-inflammatory and neurotoxic phenotype. Investigating immune regulators of microglial activation is crucial to find effective strategies to prevent and treat WMI. METHODS: Ex vivo microglial cultures and a mouse model of WMI induced by perinatal inflammation (interleukin-1-beta [IL-1ß] and postnatal days 1-5) were used to uncover and elucidate the role of microRNA-146b-5p in microglial activation and WMI. RESULTS: A specific reduction in vivo in microglia of Dicer, a protein required for microRNAs maturation, reduces pro-inflammatory activation of microglia and prevents hypomyelination in our model of WMI. Microglial miRNome analysis in the WMI model identified miRNA-146b-5p as a candidate modulator of microglial activation. Ex vivo microglial cell culture treated with the pro-inflammatory stimulus lipopolysaccharide (LPS) led to overexpression of immunomodulatory miRNA-146b-5p but its drastic reduction in the microglial extracellular vesicles (EVs). To increase miRNA-146b-5p expression, we used a 3DNA nanocarrier to deliver synthetic miRNA-146b-5p specifically to microglia. Enhancing microglial miRNA-146b-5p overexpression significantly decreased LPS-induced activation, downregulated IRAK1, and restored miRNA-146b-5p levels in EVs. In our WMI model, 3DNA miRNA-146b-5p treatment significantly prevented microglial activation, hypomyelination, and cognitive defect induced by perinatal inflammation. INTERPRETATIONS: These findings support that miRNA-146b-5p is a major regulator of microglia phenotype and could be targeted to reduce the incidence and the severity of perinatal brain injuries and their long-term consequences. ANN NEUROL 2022;91:48-65.


Subject(s)
Brain/pathology , MicroRNAs/metabolism , Microglia/pathology , White Matter/pathology , Animals , Mice , Neurogenesis/physiology
3.
EMBO J ; 36(22): 3292-3308, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28963396

ABSTRACT

Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here, we show that in contrast to healthy adult and inflammation-activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c+ microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration, and differentiation. These cells are the major source of insulin-like growth factor 1, and its selective depletion from CD11c+ microglia leads to impairment of primary myelination. CD11c-targeted toxin regimens induced a selective transcriptional response in neonates, distinct from adult microglia. CD11c+ microglia are also found in clusters of repopulating microglia after experimental ablation and in neuroinflammation in adult mice, but despite some similarities, they do not recapitulate neonatal microglial characteristics. We therefore identify a unique phenotype of neonatal microglia that deliver signals necessary for myelination and neurogenesis.


Subject(s)
Brain/cytology , Brain/embryology , Microglia/metabolism , Myelin Sheath/metabolism , Neurogenesis , Aging/genetics , Animals , Animals, Newborn , Biomarkers/metabolism , Brain/ultrastructure , CD11c Antigen/metabolism , Cell Aggregation , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Insulin-Like Growth Factor I/metabolism , Mice, Inbred C57BL , Neural Plate/metabolism , Up-Regulation/genetics
4.
Scand J Immunol ; 92(5): e12963, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32851668

ABSTRACT

Myeloid cells represent the major cellular component of innate immune responses. Myeloid cells include monocytes and macrophages, granulocytes (neutrophils, basophils and eosinophils) and dendritic cells (DC). The role of myeloid cells has been broadly described both in physiological and in pathological conditions. All tissues or organs are equipped with resident myeloid cells, such as parenchymal microglia in the brain, which contribute to maintaining homeostasis. Moreover, in case of infection or tissue damage, other myeloid cells such as monocytes or granulocytes (especially neutrophils) can be recruited from the circulation, at first to promote inflammation and later to participate in repair and regeneration. This review aims to address the regulatory roles of myeloid cells in inflammatory diseases of the central nervous system (CNS), with a particular focus on recent work showing induction of suppressive function via stimulation of innate signalling in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE).


Subject(s)
Central Nervous System/immunology , Dendritic Cells/immunology , Granulocytes/immunology , Inflammation/immunology , Macrophages/immunology , Myeloid Cells/immunology , Animals , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology
5.
Neural Plast ; 2016: 3597209, 2016.
Article in English | MEDLINE | ID: mdl-27840741

ABSTRACT

Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during pregnancy, such as infection or malnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia). Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders. As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between these three actors could provide a promising framework to better elucidate ASD etiology.


Subject(s)
Attention Deficit Disorder with Hyperactivity/metabolism , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Child Development Disorders, Pervasive/metabolism , Fatty Acids, Omega-3/metabolism , Microbiota/physiology , Animals , Child Development Disorders, Pervasive/complications , Humans , Nutritional Status/physiology
6.
Cells ; 13(2)2024 01 18.
Article in English | MEDLINE | ID: mdl-38247874

ABSTRACT

Insulin-like growth factor 1 (IGF-1) is a peptide hormone essential for the proper development and growth of the organism, as a complete knockout of Igf1 in mice is lethal, causing microcephaly, growth retardation and the defective development of organs. In the central nervous system, neurons and glia have been reported to express Igf1, but their relative importance for postnatal development has not yet been fully defined. In order to address this, here, we obtained mice with a microglia-specific inducible conditional knockout of Igf1. We show that the deficiency in microglial Igf1, starting in the first postnatal week, leads to body and brain growth retardation, severely impaired myelination, changes in microglia numbers, and behavioral abnormalities. These results emphasize the importance of microglial-derived Igf1 for brain development and function and open new perspectives for the investigation of the role of microglial-Igf1 in neurological diseases.


Subject(s)
Insulin-Like Growth Factor I , Microglia , Neurogenesis , Animals , Mice , Growth Disorders , Insulin-Like Peptides , Neuroglia
7.
Front Immunol ; 11: 430, 2020.
Article in English | MEDLINE | ID: mdl-32318054

ABSTRACT

Microglial heterogeneity has been the topic of much discussion in the scientific community. Elucidation of their plasticity and adaptability to disease states triggered early efforts to characterize microglial subsets. Over time, their phenotypes, and later on their homeostatic signature, were revealed, through the use of increasingly advanced transcriptomic techniques. Recently, an increasing number of these "microglial signatures" have been reported in various homeostatic and disease contexts. Remarkably, many of these states show similar overlapping microglial gene expression patterns, both in homeostasis and in disease or injury. In this review, we integrate information from these studies, and we propose a unique subset, for which we introduce a core signature, based on our own research and reports from the literature. We describe that this subset is found in development and in normal aging as well as in diverse diseases. We discuss the functions of this subset as well as how it is induced.


Subject(s)
Aging , Brain/cytology , Microglia/cytology , Brain/growth & development , Homeostasis/physiology , Humans , Microglia/physiology , Transcriptome
8.
Front Cell Neurosci ; 12: 523, 2018.
Article in English | MEDLINE | ID: mdl-30687013

ABSTRACT

Microglia are resident immune cells of the central nervous system. Their development and maintenance depend on stimulation of Colony Stimulating Factor-1 receptor (CSF1R). Microglia play an important role in neurodevelopment and a population of microglia that expresses the complement receptor CD11c is critical for primary myelination. This population is virtually absent in the healthy adult brain but increases dramatically upon neuroinflammatory conditions, and these microglia are suggested to play a protective role in central nervous system (CNS) diseases. To date, the molecular trigger for their expansion is unknown. Here we showed that stimulation of CSF1R by either of its ligands, CSF1 and interleukin (IL)-34, can induce expansion of CD11c+ microglia. In addition, such stimulation resulted in amelioration of EAE symptoms and decreased demyelination. Treatment with CSF1R ligands also induced expression of the chemokine CCL2, and we showed that experimental overexpression of CCL2 in the brain led to a dramatic increase of CD11c+ microglia, independent of CCR2. Moreover, this led to elevated CSF1 expression, suggesting a positive feedback loop between CSF1R and CCL2. These data provide new insights to microglia biology and open new perspectives for modulating microglial activity in neuroinflammatory diseases such as multiple sclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL