Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37995687

ABSTRACT

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Subject(s)
Endogenous Retroviruses , Endogenous Retroviruses/genetics , RNA, Nuclear , Epigenesis, Genetic , Heterochromatin , Gene Expression
2.
Cell ; 158(4): 734-748, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25126782

ABSTRACT

The homeostasis of multicellular organisms requires terminally differentiated cells to preserve their lineage specificity. However, it is unclear whether mechanisms exist to actively protect cell identity in response to environmental cues that confer functional plasticity. Regulatory T (Treg) cells, specified by the transcription factor Foxp3, are indispensable for immune system homeostasis. Here, we report that conserved noncoding sequence 2 (CNS2), a CpG-rich Foxp3 intronic cis-element specifically demethylated in mature Tregs, helps maintain immune homeostasis and limit autoimmune disease development by protecting Treg identity in response to signals that shape mature Treg functions and drive their initial differentiation. In activated Tregs, CNS2 helps protect Foxp3 expression from destabilizing cytokine conditions by sensing TCR/NFAT activation, which facilitates the interaction between CNS2 and Foxp3 promoter. Thus, epigenetically marked cis-elements can protect cell identity by sensing key environmental cues central to both cell identity formation and functional plasticity without interfering with initial cell differentiation.


Subject(s)
Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/cytology , Animals , Base Sequence , Cell Differentiation , Conserved Sequence , CpG Islands , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/metabolism , Mice , Molecular Sequence Data , Regulatory Sequences, Nucleic Acid , T-Lymphocytes, Regulatory/metabolism
3.
Nat Immunol ; 16(5): 485-94, 2015 May.
Article in English | MEDLINE | ID: mdl-25822250

ABSTRACT

The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Influenza, Human/immunology , Orthomyxoviridae/physiology , RNA Helicases/metabolism , RNA Polymerase II/metabolism , Spinocerebellar Degenerations/genetics , West Nile Fever/immunology , West Nile virus/physiology , Animals , Cell Line, Tumor , Chlorocebus aethiops , Cytokines/metabolism , DNA Helicases , Dogs , Down-Regulation , Humans , Immunity, Innate/genetics , Interferon Regulatory Factor-3/metabolism , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Microarray Analysis , Multifunctional Enzymes , RNA Helicases/genetics , RNA Polymerase II/genetics , RNA, Small Interfering/genetics , Spinocerebellar Ataxias/congenital , Vero Cells , Virus Replication/genetics
4.
Genes Dev ; 31(22): 2222-2234, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29269482

ABSTRACT

Recent studies have shown that a subset of nucleoporins (Nups) can detach from the nuclear pore complex and move into the nuclear interior to regulate transcription. One such dynamic Nup, called Nup98, has been implicated in gene activation in healthy cells and has been shown to drive leukemogenesis when mutated in patients with acute myeloid leukemia (AML). Here we show that in hematopoietic cells, Nup98 binds predominantly to transcription start sites to recruit the Wdr82-Set1A/COMPASS (complex of proteins associated with Set1) complex, which is required for deposition of the histone 3 Lys4 trimethyl (H3K4me3)-activating mark. Depletion of Nup98 or Wdr82 abolishes Set1A recruitment to chromatin and subsequently ablates H3K4me3 at adjacent promoters. Furthermore, expression of a Nup98 fusion protein implicated in aggressive AML causes mislocalization of H3K4me3 at abnormal regions and up-regulation of associated genes. Our findings establish a function of Nup98 in hematopoietic gene activation and provide mechanistic insight into which Nup98 leukemic fusion proteins promote AML.


Subject(s)
Hematopoietic Stem Cells/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Nuclear Pore Complex Proteins/metabolism , Promoter Regions, Genetic , Transcriptional Activation , Animals , Cells, Cultured , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Developmental , Humans , Methylation , Mice
5.
Genes Dev ; 30(20): 2253-2258, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27807035

ABSTRACT

The organization of the genome in the three-dimensional space of the nucleus is coupled with cell type-specific gene expression. However, how nuclear architecture influences transcription that governs cell identity remains unknown. Here, we show that nuclear pore complex (NPC) components Nup93 and Nup153 bind superenhancers (SE), regulatory structures that drive the expression of key genes that specify cell identity. We found that nucleoporin-associated SEs localize preferentially to the nuclear periphery, and absence of Nup153 and Nup93 results in dramatic transcriptional changes of SE-associated genes. Our results reveal a crucial role of NPC components in the regulation of cell type-specifying genes and highlight nuclear architecture as a regulatory layer of genome functions in cell fate.


Subject(s)
Cell Differentiation/genetics , Cell Nucleus/metabolism , Gene Expression Regulation/genetics , Nuclear Pore Complex Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/physiology , Genome/genetics , Humans , Nuclear Envelope/metabolism , Nuclear Pore Complex Proteins/genetics , Protein Binding , Protein Transport
6.
Genes Dev ; 30(10): 1155-71, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27198230

ABSTRACT

Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo-cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for "soluble Pom121") that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components.


Subject(s)
Evolution, Molecular , Gene Expression Regulation , Membrane Glycoproteins/metabolism , Mutant Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , 5' Untranslated Regions/genetics , Cell Membrane/metabolism , Cell Nucleus/metabolism , Exons/genetics , HeLa Cells , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Nuclear Localization Signals , Nuclear Pore Complex Proteins/chemistry , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/metabolism , Solubility , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Initiation Site
7.
Mol Cell ; 58(5): 780-93, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25936800

ABSTRACT

The Wnt3a/ß-catenin and Activin/SMAD2,3 signaling pathways synergize to induce endodermal differentiation of human embryonic stem cells; however, the underlying mechanism is not well understood. Using ChIP-seq and GRO-seq analyses, we show here that Wnt3a-induced ß-catenin:LEF-1 enhancers recruit cohesin to direct enhancer-promoter looping and activate mesendodermal (ME) lineage genes. Moreover, we find that LEF-1 and other hESC enhancers recruit RNAPII complexes (eRNAPII) that are highly phosphorylated at Ser5, but not Ser7. Wnt3a signaling further increases Ser5P-RNAPII at LEF-1 sites and ME gene promoters, indicating that elongation remains limiting. However, subsequent Activin/SMAD2,3 signaling selectively increases transcription elongation, P-TEFb occupancy, and Ser7P-RNAPII levels at these genes. Finally, we show that the Hippo regulator, YAP, functions with TEAD to regulate binding of the NELF negative elongation factor and block SMAD2,3 induction of ME genes. Thus, the Wnt3a/ß-catenin and Activin/SMAD2,3 pathways act in concert to counteract YAP repression and upregulate ME genes during early hESC differentiation.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Embryonic Stem Cells/physiology , Phosphoproteins/physiology , RNA Polymerase II/metabolism , Smad Proteins/physiology , beta Catenin/metabolism , Activins/metabolism , Base Sequence , Cell Differentiation , Cells, Cultured , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Humans , Lymphoid Enhancer-Binding Factor 1/physiology , Phosphorylation , Protein Processing, Post-Translational , Transcription Elongation, Genetic , Transcription Factors , Wnt Signaling Pathway , Wnt3A Protein/metabolism , YAP-Signaling Proteins , beta Catenin/genetics
8.
Genes Dev ; 29(12): 1224-38, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26080816

ABSTRACT

Nucleoporins (Nups) are a family of proteins best known as the constituent building blocks of nuclear pore complexes (NPCs), membrane-embedded channels that mediate nuclear transport across the nuclear envelope. Recent evidence suggests that several Nups have additional roles in controlling the activation and silencing of developmental genes; however, the mechanistic details of these functions remain poorly understood. Here, we show that depletion of Nup153 in mouse embryonic stem cells (mESCs) causes the derepression of developmental genes and induction of early differentiation. This loss of stem cell identity is not associated with defects in the nuclear import of key pluripotency factors. Rather, Nup153 binds around the transcriptional start site (TSS) of developmental genes and mediates the recruitment of the polycomb-repressive complex 1 (PRC1) to a subset of its target loci. Our results demonstrate a chromatin-associated role of Nup153 in maintaining stem cell pluripotency by functioning in mammalian epigenetic gene silencing.


Subject(s)
Embryonic Stem Cells/physiology , Gene Silencing , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Pluripotent Stem Cells/physiology , Animals , Binding Sites , Cell Differentiation , Cell Nucleus/metabolism , Chromatin/metabolism , Chromosome Mapping , Embryonic Stem Cells/cytology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Mice , Pluripotent Stem Cells/cytology , Polycomb Repressive Complex 1/metabolism , Protein Binding
9.
Genes Dev ; 29(6): 603-16, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25762439

ABSTRACT

Basic helix-loop-helix (bHLH) transcription factors recognize the canonical E-box (CANNTG) to regulate gene transcription; however, given the prevalence of E-boxes in a genome, it has been puzzling how individual bHLH proteins selectively recognize E-box sequences on their targets. TWIST is a bHLH transcription factor that promotes epithelial-mesenchymal transition (EMT) during development and tumor metastasis. High-resolution mapping of TWIST occupancy in human and Drosophila genomes reveals that TWIST, but not other bHLH proteins, recognizes a unique double E-box motif with two E-boxes spaced preferentially by 5 nucleotides. Using molecular modeling and binding kinetic analyses, we found that the strict spatial configuration in the double E-box motif aligns two TWIST-E47 dimers on the same face of DNA, thus providing a high-affinity site for a highly stable intramolecular tetramer. Biochemical analyses showed that the WR domain of TWIST dimerizes to mediate tetramer formation, which is functionally required for TWIST-induced EMT. These results uncover a novel mechanism for a bHLH transcription factor to recognize a unique spatial configuration of E-boxes to achieve target specificity. The WR-WR domain interaction uncovered here sets an example of target gene specificity of a bHLH protein being controlled allosterically by a domain outside of the bHLH region.


Subject(s)
Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Models, Molecular , Twist-Related Protein 1/chemistry , Twist-Related Protein 1/metabolism , Amino Acid Sequence , Animals , Biological Evolution , Conserved Sequence , Drosophila/chemistry , Drosophila/metabolism , Gene Expression Regulation , Humans , Protein Binding , Protein Stability , Protein Structure, Tertiary , Substrate Specificity
10.
Nature ; 536(7615): 205-9, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27487209

ABSTRACT

Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P < 0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11. rearrangement show that more than 96% of breakpoints occur within the H. sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282 ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.


Subject(s)
Chromosomes, Human, Pair 16/genetics , DNA Copy Number Variations/genetics , Evolution, Molecular , Genetic Predisposition to Disease , Proteins/genetics , Animals , Autistic Disorder/genetics , Chromosome Breakage , Gene Duplication , Homeostasis/genetics , Humans , Iron/metabolism , Pan troglodytes/genetics , Pongo/genetics , Proteins/analysis , Recombination, Genetic , Species Specificity , Time Factors
11.
Gastroenterology ; 158(6): 1728-1744.e14, 2020 05.
Article in English | MEDLINE | ID: mdl-31982409

ABSTRACT

BACKGROUND & AIMS: Development of liver fibrosis is associated with activation of quiescent hepatic stellate cells (HSCs) into collagen type I-producing myofibroblasts (activated HSCs). Cessation of liver injury often results in fibrosis resolution and inactivation of activated HSCs/myofibroblasts into a quiescent-like state (inactivated HSCs). We aimed to identify molecular features of phenotypes of HSCs from mice and humans. METHODS: We performed studies with LratCre, Ets1-floxed, Nf1-floxed, Pparγ-floxed, Gata6-floxed, Rag2-/-γc-/-, and C57/Bl6 (control) mice. Some mice were given carbon tetrachloride (CCl4) to induce liver fibrosis, with or without a peroxisome proliferator-activated receptor-γ (PPARγ) agonist. Livers from mice were analyzed by immunohistochemistry. Quiescent, activated, and inactivated HSCs were isolated from livers of Col1α1YFP mice and analyzed by chromatin immunoprecipitation and sequencing. Human HSCs were isolated from livers denied for transplantation. We compared changes in gene expression patterns and epigenetic modifications (histone H3 lysine 4 dimethylation and histone H3 lysine 27 acetylation) in primary mouse and human HSCs. Transcription factors were knocked down with small hairpin RNAs in mouse HSCs. RESULTS: Motif enrichment identified E26 transcription-specific transcription factors (ETS) 1, ETS2, GATA4, GATA6, interferon regulatory factor (IRF) 1, and IRF2 transcription factors as regulators of the mouse and human HSC lineage. Small hairpin RNA-knockdown of these transcription factors resulted in increased expression of genes that promote fibrogenesis and inflammation, and loss of HSC phenotype. Disruption of Gata6 or Ets1, or Nf1 or Pparγ (which are regulated by ETS1), increased the severity of CCl4-induced liver fibrosis in mice compared to control mice. Only mice with disruption of Gata6 or Pparγ had defects in fibrosis resolution after CCl4 administration was stopped, associated with persistent activation of HSCs. Administration of a PPARγ agonist accelerated regression of liver fibrosis after CCl4 administration in control mice but not in mice with disruption of Pparγ. CONCLUSIONS: Phenotypes of HSCs from humans and mice are regulated by transcription factors, including ETS1, ETS2, GATA4, GATA6, IRF1, and IRF2. Activated mouse and human HSCs can revert to a quiescent-like, inactivated phenotype. We found GATA6 and PPARγ to be required for inactivation of human HSCs and regression of liver fibrosis in mice.


Subject(s)
GATA6 Transcription Factor/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis, Experimental/pathology , Proto-Oncogene Protein c-ets-1/metabolism , Animals , Carbon Tetrachloride/toxicity , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , GATA6 Transcription Factor/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Hepatic Stellate Cells/drug effects , Humans , Liver Cirrhosis, Experimental/chemically induced , Mice , Mice, Transgenic , Myofibroblasts/pathology , PPAR gamma/agonists , PPAR gamma/genetics , Primary Cell Culture , Proto-Oncogene Protein c-ets-1/genetics
12.
Nature ; 521(7552): 316-21, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25945737

ABSTRACT

Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution.


Subject(s)
Chimera , Pluripotent Stem Cells/cytology , Animals , Cell Culture Techniques/methods , Cell Line , Embryonic Stem Cells/cytology , Female , Germ Layers/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice , Pan troglodytes , Pluripotent Stem Cells/metabolism , Regenerative Medicine , Species Specificity
13.
J Hepatol ; 72(5): 946-959, 2020 05.
Article in English | MEDLINE | ID: mdl-31899206

ABSTRACT

BACKGROUND & AIMS: Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA. METHODS: Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens. RESULTS: We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra-/- and major urinary protein-urokinase-type plasminogen activator/Il-17ra-/- mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC. CONCLUSIONS: Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC. LAY SUMMARY: IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Interleukin-17/metabolism , Kupffer Cells/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/complications , Liver Diseases, Alcoholic/metabolism , Liver Neoplasms/metabolism , Signal Transduction/genetics , Animals , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Ethanol/adverse effects , Gene Deletion , Humans , Liver Cirrhosis/pathology , Liver Diseases, Alcoholic/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics , Transcriptome
15.
Proc Natl Acad Sci U S A ; 112(3): E297-302, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25564661

ABSTRACT

Enhancers are critical genomic elements that define cellular and functional identity through the spatial and temporal regulation of gene expression. Recent studies suggest that key genes regulating cell type-specific functions reside in enhancer-dense genomic regions (i.e., super enhancers, stretch enhancers). Here we report that enhancer RNAs (eRNAs) identified by global nuclear run-on sequencing are extensively transcribed within super enhancers and are dynamically regulated in response to cellular signaling. Using Toll-like receptor 4 (TLR4) signaling in macrophages as a model system, we find that transcription of super enhancer-associated eRNAs is dynamically induced at most of the key genes driving innate immunity and inflammation. Unexpectedly, genes repressed by TLR4 signaling are also associated with super enhancer domains and accompanied by massive repression of eRNA transcription. Furthermore, we find each super enhancer acts as a single regulatory unit within which eRNA and genic transcripts are coordinately regulated. The key regulatory activity of these domains is further supported by the finding that super enhancer-associated transcription factor binding is twice as likely to be conserved between human and mouse than typical enhancer sites. Our study suggests that transcriptional activities at super enhancers are critical components to understand the dynamic gene regulatory network.


Subject(s)
Enhancer Elements, Genetic , Inflammation/metabolism , RNA/genetics , Animals , Cells, Cultured , Humans , Mice , Signal Transduction , Toll-Like Receptor 4/metabolism , Transcription, Genetic
16.
Proc Natl Acad Sci U S A ; 112(51): 15713-8, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26644586

ABSTRACT

Liver fibrosis is characterized by the persistent deposition of extracellular matrix components by hepatic stellate cell (HSC)-derived myofibroblasts. It is the histological manifestation of progressive, but reversible wound-healing processes. An unabated fibrotic response results in chronic liver disease and cirrhosis, a pathological precursor of hepatocellular carcinoma. We report here that JQ1, a small molecule inhibitor of bromodomain-containing protein 4 (BRD4), a member of bromodomain and extraterminal (BET) proteins, abrogate cytokine-induced activation of HSCs. Cistromic analyses reveal that BRD4 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, where BRD4 is colocalized with profibrotic transcription factors. Furthermore, we show that JQ1 is not only protective, but can reverse the fibrotic response in carbon tetrachloride-induced fibrosis in mouse models. Our results implicate that BRD4 can act as a global genomic regulator to direct the fibrotic response through its coordinated regulation of myofibroblast transcription. This suggests BRD4 as a potential therapeutic target for patients with fibrotic complications.


Subject(s)
Liver Cirrhosis, Experimental/drug therapy , Nuclear Proteins/physiology , Transcription Factors/physiology , Animals , Azepines/pharmacology , Azepines/therapeutic use , Cells, Cultured , Hepatic Stellate Cells/drug effects , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Triazoles/therapeutic use
17.
Genes Dev ; 24(24): 2760-5, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21106671

ABSTRACT

In the macrophage, toll-like receptors (TLRs) are key sensors that trigger signaling cascades to activate inflammatory programs via the NF-κB gene network. However, the genomic network targeted by TLR/NF-κB activation and the molecular basis by which it is restrained to terminate activation and re-establish quiescence is poorly understood. Here, using chromatin immunoprecipitation sequencing (ChIP-seq), we define the NF-κB cistrome, which is comprised of 31,070 cis-acting binding sites responsive to lipopolysaccharide (LPS)-induced signaling. In addition, we demonstrate that the transcriptional repressor B-cell lymphoma 6 (Bcl-6) regulates nearly a third of the Tlr4-regulated transcriptome, and that 90% of the Bcl-6 cistrome is collapsed following Tlr4 activation. Bcl-6-deficient macrophages are acutely hypersensitive to LPS and, using comparative ChIP-seq analyses, we found that the Bcl-6 and NF-κB cistromes intersect, within nucleosomal distance, at nearly half of Bcl-6-binding sites in stimulated macrophages to promote opposing epigenetic modifications of the local chromatin. These results reveal a genomic strategy for controlling the innate immune response in which repressive and inductive cistromes establish a dynamic balance between macrophage quiescence and activation via epigenetically marked cis-regulatory elements.


Subject(s)
DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Macrophages/immunology , NF-kappa B/genetics , Animals , Binding Sites , Cells, Cultured , Epigenesis, Genetic , Lipopolysaccharides/pharmacology , Mice , Proto-Oncogene Proteins c-bcl-6 , Toll-Like Receptor 4/genetics
18.
Nature ; 474(7351): 390-4, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21572438

ABSTRACT

Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA) based on global nuclear run-on sequencing (GRO-seq) analysis, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer-promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.


Subject(s)
Enhancer Elements, Genetic/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , RNA, Untranslated/genetics , Receptors, Androgen/metabolism , Transcription, Genetic/genetics , Base Sequence , Cell Line, Tumor , Cell Lineage , Dihydrotestosterone/pharmacology , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genome, Human/genetics , HEK293 Cells , Hepatocyte Nuclear Factor 3-alpha/deficiency , Hepatocyte Nuclear Factor 3-alpha/genetics , Histones/metabolism , Humans , Kallikreins , Male , Prostate-Specific Antigen , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
19.
Genes Dev ; 23(6): 681-93, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19299558

ABSTRACT

Innate immune responses to bacterial or viral infection require rapid transition of large cohorts of inflammatory response genes from poised/repressed to actively transcribed states, but the underlying repression/derepression mechanisms remain poorly understood. Here, we report that, while the nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors establish repression checkpoints on broad sets of inflammatory response genes in macrophages and are required for nearly all of the transrepression activities of liver X receptors (LXRs), they can be selectively recruited via c-Jun or the Ets repressor Tel, respectively, establishing NCoR-specific, SMRT-specific, and NCoR/SMRT-dependent promoters. Unexpectedly, the binding of NCoR and SMRT to NCoR/SMRT-dependent promoters is frequently mutually dependent, establishing a requirement for both proteins for LXR transrepression and enabling inflammatory signaling pathways that selectively target NCoR or SMRT to also derepress/activate NCoR/SMRT-dependent genes. These findings reveal a combinatorial, corepressor-based strategy for integration of inflammatory and anti-inflammatory signals that play essential roles in immunity and homeostasis.


Subject(s)
DNA-Binding Proteins/immunology , Macrophages/immunology , Nuclear Proteins/immunology , Repressor Proteins/immunology , Animals , Cells, Cultured , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Immunity, Innate , Inflammation/immunology , JNK Mitogen-Activated Protein Kinases/immunology , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/cytology , Liver/immunology , Liver X Receptors , Mice , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 1 , Nuclear Receptor Co-Repressor 2 , Orphan Nuclear Receptors , Protein Binding , Receptors, Cytoplasmic and Nuclear/immunology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction
20.
Nature ; 466(7305): 508-12, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20622854

ABSTRACT

While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.


Subject(s)
Cell Cycle/physiology , Chromosomal Proteins, Non-Histone/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Lysine/metabolism , Transcription Factors/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Cell Line , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , HeLa Cells , Histone Demethylases/chemistry , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Host Cell Factor C1/genetics , Host Cell Factor C1/metabolism , Humans , Methylation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Structure, Tertiary , Transcription Factors/chemistry , Transcription Factors/deficiency , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL