Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34819373

ABSTRACT

A protracted outbreak of New Delhi metallo-ß-lactamase (NDM)-producing carbapenem-resistant Klebsiella pneumoniae started in Tuscany, Italy, in November 2018 and continued in 2020 and through 2021. To understand the regional emergence and transmission dynamics over time, we collected and sequenced the genomes of 117 extensively drug-resistant, NDM-producing K. pneumoniae isolates cultured over a 20-mo period from 76 patients at several healthcare facilities in southeast Tuscany. All isolates belonged to high-risk clone ST-147 and were typically nonsusceptible to all first-line antibiotics. Albeit sporadic, resistances to colistin, tigecycline, and fosfomycin were also observed as a result of repeated, independent mutations. Genomic analysis revealed that ST-147 isolates circulating in Tuscany were monophyletic and highly genetically related (including a network of 42 patients from the same hospital and sharing nearly identical isolates), and shared a recent ancestor with clinical isolates from the Middle East. While the blaNDM-1 gene was carried by an IncFIB-type plasmid, our investigations revealed that the ST-147 lineage from Italy also acquired a hybrid IncFIB/IncHIB-type plasmid carrying the 16S methyltransferase armA gene as well as key virulence biomarkers often found in hypervirulent isolates. This plasmid shared extensive homologies with mosaic plasmids circulating globally including from ST-11 and ST-307 convergent lineages. Phenotypically, the carriage of this hybrid plasmid resulted in increased siderophore production but did not confer virulence to the level of an archetypical, hypervirulent K. pneumoniae in a subcutaneous model of infection with immunocompetent CD1 mice. Our findings highlight the importance of performing genomic surveillance to identify emerging threats.


Subject(s)
Disease Outbreaks , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Animals , Anti-Bacterial Agents , Bacterial Proteins/genetics , Biomarkers , Carbapenems , Colistin , Computational Biology/methods , Cross Infection/epidemiology , Humans , Italy/epidemiology , Kaplan-Meier Estimate , Likelihood Functions , Mice , Microbial Sensitivity Tests , Pharmaceutical Preparations , Plasmids , Polymorphism, Single Nucleotide , beta-Lactamases/genetics
2.
Euro Surveill ; 29(24)2024 Jun.
Article in English | MEDLINE | ID: mdl-38873796

ABSTRACT

In 2003-2023, amid 5,436 Acinetobacter baumannii isolates collected globally through the Multidrug-Resistant Organism Repository and Surveillance Network, 97 were ST19PAS, 34 of which carbapenem-resistant. Strains (n = 32) sampled after 2019 harboured either bla OXA-23, bla OXA-72, and/or bla NDM-5. Phylogenetic analysis of the 97 isolates and 11 publicly available ST19 genomes revealed three sub-lineages of carbapenemase-producing isolates from mainly Ukraine and Georgia, including an epidemic clone carrying all three carbapenemase genes. Infection control and global surveillance of carbapenem-resistant A. baumannii remain important.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacterial Proteins , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Bacterial Proteins/genetics , Ukraine/epidemiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Phylogeny , Drug Resistance, Multiple, Bacterial/genetics , Georgia (Republic)/epidemiology , Multilocus Sequence Typing
3.
Emerg Infect Dis ; 29(8): 1692-1695, 2023 08.
Article in English | MEDLINE | ID: mdl-37406356

ABSTRACT

Blood and surveillance cultures from an injured service member from Ukraine grew Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecium, and 3 distinct Pseudomonas aeruginosa strains. Isolates were nonsusceptible to most antibiotics and carried an array of antibiotic resistant genes, including carbapenemases (blaIMP-1, blaNDM-1, blaOXA-23, blaOXA-48, blaOXA-72) and 16S methyltransferases (armA and rmtB4).


Subject(s)
Acinetobacter baumannii , Military Personnel , Humans , Ukraine/epidemiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics
4.
J Infect Dis ; 225(1): 146-156, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34161579

ABSTRACT

BACKGROUND: Plasmodium vivax controlled human malaria infection (PvCHMI) is an important tool for evaluation of drugs, vaccines, and pathologies associated with this parasite. However, there are few data on safety due to limited numbers of PvCHMIs performed. METHODS: We report clinical and laboratory data, including hematological and biochemical profiles and adverse events (AEs), following mosquito bite-induced PvCHMI in malaria-naive study participants. Malaria diagnosis and treatment initiation was based on microscopic analysis of Giemsa-stained slides. Exploratory molecular assays were used to detect parasites using real-time polymerase chain reaction (PCR). RESULTS: AEs were mild to moderate and no study-related severe AEs were observed in any study participants. The majority of symptoms were transient, resolving within 48 hours. Molecular diagnostic methods detected parasitemia in 100% of study participants before malaria diagnosis using microscopy. Of reported AEs, microscopy detected 67%-100%, quantitative PCR 79%-100%, and quantitative real-time reverse-transcription PCR 96%-100% of study participants prior to appearance of symptoms. Almost all symptoms appeared after initiation of treatment, likely as known consequence of drug treatment. CONCLUSIONS: PvCHMI is safe with the majority of infections being detected prior to appearance of clinical symptoms, which can be further alleviated by using sensitive molecular methods for clinical diagnosis. Clinical Trials Registration. NCT01157897.


Subject(s)
DNA, Protozoan/isolation & purification , Insect Bites and Stings , Malaria, Vivax/diagnosis , Malaria/diagnosis , Plasmodium vivax/genetics , Real-Time Polymerase Chain Reaction/methods , Adult , DNA, Protozoan/blood , Female , Humans , Malaria/blood , Male , Middle Aged , Pathology, Molecular , Plasmodium vivax/isolation & purification , Young Adult
5.
Clin Infect Dis ; 74(5): 909-912, 2022 03 09.
Article in English | MEDLINE | ID: mdl-34086878

ABSTRACT

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.345 variant carrying the E484K mutation was detected in 4 patients with no apparent epidemiological association from a hospital network in upstate New York. Subsequent analysis identified an additional 11 B.1.1.345 variants from this region between December 2020 and February 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , New York/epidemiology , SARS-CoV-2/genetics
6.
Antimicrob Agents Chemother ; 66(1): e0082421, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34662188

ABSTRACT

Hospitalized patients are at risk of developing serious multidrug resistant bacterial infections. This risk is heightened in patients who are on mechanical ventilation, are immunocompromised, and/or have chronic comorbidities. We report the case of a 52-year-old critically ill patient with a multidrug resistant Acinetobacter baumannii (MDR-A) respiratory infection who was successfully treated with antibiotics and intravenous and nebulized bacteriophage therapy.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Phage Therapy , Respiratory Tract Infections , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Critical Illness , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial , Humans , Middle Aged , Respiratory Tract Infections/drug therapy
7.
Antimicrob Agents Chemother ; 65(7): e0015021, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33972237

ABSTRACT

KPC-82 is a KPC-2 variant identified in a carbapenem-nonsusceptible Citrobacter koseri that confers high-level resistance to ceftazidime-avibactam. Genomic analysis revealed that blaKPC-82 is carried by a chromosomally integrated Tn4401 transposon (disrupting porin gene phoE) and evolved by a 6-nucleotide tandem repeat duplication causing a two-amino-acid insertion (Ser-Asp) within the Ala267-Ser275 loop. Similar to related KPC variants, KPC-82 showed decreased carbapenemase activity when expressed in a heterologous background and remained susceptible to carbapenem/ß-lactamase inhibitor combinations.


Subject(s)
Carbapenems , Citrobacter koseri , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins/genetics , Carbapenems/pharmacology , Ceftazidime/pharmacology , Drug Combinations , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases/genetics
8.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32718956

ABSTRACT

Over the past two decades, Acinetobacter baumannii has emerged as a leading cause of nosocomial infections worldwide. Of particular concern are panresistant strains, leading the World Health Organization (WHO) to designate carbapenem-resistant A. baumannii as a priority 1 (critical) pathogen for research and development of new antibiotics. A key component in supporting this effort is accessibility to diverse and clinically relevant strains for testing. Here, we describe a panel of 100 diverse A. baumannii strains for use in this endeavor. Whole-genome sequencing was performed on 3,505 A. baumannii isolates housed at the Multidrug-Resistant Organism Repository and Surveillance Network. Isolates were cultured from clinical samples at health care facilities around the world between 2001 and 2017. Core-genome multilocus sequence typing and high-resolution single nucleotide polymorphism (SNP)-based phylogenetic analyses were used to select a final panel of 100 strains that captured the genetic diversity of the collection. Comprehensive antibiotic susceptibility testing was also performed on all 100 isolates using 14 clinically relevant antibiotics. The final 100-strain diversity panel contained representative strains from 70 different traditional Pasteur scheme multilocus sequence types, including major epidemic clones. This diversity was also reflected in antibiotic susceptibility and antimicrobial resistance (AMR) gene content, with phenotypes ranging from pansensitive to panresistant, and over 100 distinct AMR gene alleles identified from 32 gene families. This panel provides the most diverse and comprehensive set of A. baumannii strains for use in developing solutions for combating antibiotic resistance. The panel and all available metadata, including genome sequences, will be available to industry and academic institutions and federal and other laboratories free of charge.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Research
9.
N Engl J Med ; 376(4): 330-341, 2017 01 26.
Article in English | MEDLINE | ID: mdl-25830322

ABSTRACT

BACKGROUND: The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. METHODS: We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. RESULTS: The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. CONCLUSIONS: This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Adult , Antibodies, Viral/blood , Double-Blind Method , Ebola Vaccines/administration & dosage , Ebola Vaccines/adverse effects , Ebolavirus/genetics , Ebolavirus/isolation & purification , Enzyme-Linked Immunosorbent Assay , Female , Hemorrhagic Fever, Ebola/immunology , Humans , Male , Middle Aged , Recombinant Proteins , Seroconversion , Vaccines, Attenuated/immunology , Vesicular stomatitis Indiana virus , Viral Envelope Proteins/isolation & purification , Viremia
10.
J Infect Dis ; 220(11): 1761-1770, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31549155

ABSTRACT

BACKGROUND: Plasmodium vivax malaria requires a 2-week course of primaquine (PQ) for radical cure. Evidence suggests that the hepatic isoenzyme cytochrome P450 2D6 (CYP2D6) is the key enzyme required to convert PQ into its active metabolite. METHODS: CYP2D6 genotypes and phenotypes of 550 service personnel were determined, and the pharmacokinetics (PK) of a 30-mg oral dose of PQ was measured in 45 volunteers. Blood and urine samples were collected, with PQ and metabolites were measured using ultraperformance liquid chromatography with mass spectrometry. RESULTS: Seventy-six CYP2D6 genotypes were characterized for 530 service personnel. Of the 515 personnel for whom a single phenotype was predicted, 58% had a normal metabolizer (NM) phenotype, 35% had an intermediate metabolizer (IM) phenotype, 5% had a poor metabolizer (PM) phenotype, and 2% had an ultrametabolizer phenotype. The median PQ area under the concentration time curve from 0 to ∞ was lower for the NM phenotype as compared to the IM or PM phenotypes. The novel 5,6-ortho-quinone was detected in urine but not plasma from all personnel with the NM phenotype. CONCLUSION: The plasma PK profile suggests PQ metabolism is decreased in personnel with the IM or PM phenotypes as compared to those with the NM phenotype. The finding of 5,6-ortho-quinone, the stable surrogate for the unstable 5-hydroxyprimaquine metabolite, almost exclusively in personnel with the NM phenotype, compared with sporadic or no production in those with the IM or PM phenotypes, provides further evidence for the role of CYP2D6 in radical cure. CLINICAL TRIALS REGISTRATION: NCT02960568.


Subject(s)
Antimalarials/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Genotype , Primaquine/metabolism , Administration, Oral , Adolescent , Adult , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Blood Chemical Analysis , Chromatography, High Pressure Liquid , Cohort Studies , Female , Humans , Male , Mass Spectrometry , Middle Aged , Military Personnel , Phenotype , Plasma/chemistry , Primaquine/administration & dosage , Primaquine/pharmacokinetics , United States , Urinalysis , Urine/chemistry , Young Adult
11.
Infect Immun ; 87(3)2019 03.
Article in English | MEDLINE | ID: mdl-30559218

ABSTRACT

Seroepidemiological studies on the prevalence of antibodies to malaria antigens are primarily conducted on individuals from regions of endemicity. It is therefore difficult to accurately correlate the antibody responses to the timing and number of prior malaria infections. This study was undertaken to assess the evolution of antibodies to the dominant surface antigens of Plasmodium vivax and P. falciparum following controlled human malaria infection (CHMI) in malaria-naive individuals. Serum samples from malaria-naive adults, collected before and after CHMI with either P. vivax (n = 18) or P. falciparum (n = 18), were tested for the presence of antibodies to the circumsporozoite protein (CSP) and the 42-kDa fragment of merozoite surface protein 1 (MSP-142) of P. vivax and P. falciparum using an enzyme-linked immunosorbent assay (ELISA). Approximately 1 month following CHMI with either P. vivax or P. falciparum, >60% of subjects seroconverted to homologous CSP and MSP-1. More than 50% of the subjects demonstrated reactivity to heterologous CSP and MSP-142, and a similar proportion of subjects remained seropositive to homologous MSP-142 >5 months after CHMI. Computational analysis provides insight into the presence of cross-reactive responses. The presence of long-lived and heterologous reactivity and its functional significance, if any, need to be taken into account while evaluating malaria exposure in field settings.


Subject(s)
Antigens, Protozoan/immunology , Erythrocytes/parasitology , Malaria, Falciparum/immunology , Malaria, Vivax/immunology , Plasmodium falciparum , Plasmodium vivax , Adolescent , Adult , Animals , Anopheles/parasitology , Epitopes, B-Lymphocyte , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Male , Middle Aged , Mosquito Vectors/parasitology , Protozoan Proteins/immunology , Young Adult
12.
Infection ; 47(5): 729-737, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30796628

ABSTRACT

PURPOSE: Individuals with methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infection (SSTI) can be simultaneously colonized with MRSA on multiple body sites. Using whole genome sequencing (WGS), the intrahost relatedness of MRSA colonization and infection isolates was investigated. METHODS: In the context of a prospective case-control study of SSTI, we analyzed colonization and infection isolates from US Army Infantry trainees with purulent infection due to MRSA. At the time of clinical presentation for SSTI, culture swabs were obtained from the infection site, as well as from the patient's nasal, oral, inguinal, and perianal regions. S. aureus culture and susceptibility was performed by standard methods. DNA from MRSA isolates was extracted and libraries were produced. Sequences were generated on an Illumina MiSeq, sequence reads were assembled, and single nucleotide variant (SNV) data were analyzed. RESULTS: Of 74 trainees with MRSA SSTI, 19 (25.7%) were colonized with MRSA. Ten (52.6%) were colonized on more than one body site. Colonization frequency by anatomic site was as follows: inguinal region (33%), nasal region (30%), perianal region (22%), and oral region (14%). A total of 36 MRSA colonization isolates were characterized. The intrahost median number of SNVs between infection and colonization isolates was 17. Among trainees with recurrent MRSA SSTI, limited intrahost diversity suggests that persistent colonization is a major contributor to recurrence risk. CONCLUSIONS: Among military trainees with MRSA SSTI, genomic characterization of infection and colonization isolates revealed a high degree of strain relatedness. Single acquisition events may account for MRSA colonization and infection in this population.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/genetics , Military Personnel/statistics & numerical data , Soft Tissue Infections/epidemiology , Staphylococcal Skin Infections/epidemiology , Adolescent , Adult , Case-Control Studies , DNA, Bacterial/genetics , Genomics , Humans , Male , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors , Soft Tissue Infections/microbiology , United States/epidemiology , Whole Genome Sequencing , Young Adult
13.
J Infect Dis ; 225(5): 927-928, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34610130

Subject(s)
Malaria , Transaminases , Humans
14.
Clin Infect Dis ; 65(3): 461-468, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28419202

ABSTRACT

BACKGROUND: Military trainees are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infection (SSTI). Whole genome sequencing (WGS) can refine our understanding of MRSA transmission and microevolution in congregate settings. METHODS: We conducted a prospective case-control study of SSTI among US Army infantry trainees at Fort Benning, Georgia, from July 2012 to December 2014. We identified clusters of USA300 MRSA SSTI within select training classes and performed WGS on clinical isolates. We then linked genomic, phylogenetic, epidemiologic, and clinical data in order to evaluate intra- and interclass disease transmission. Furthermore, among cases of recurrent MRSA SSTI, we evaluated the intrahost relatedness of infecting strains. RESULTS: Nine training classes with ≥5 cases of USA300 MRSA SSTI were selected. Eighty USA300 MRSA clinical isolates from 74 trainees, 6 (8.1%) of whom had recurrent infection, were subjected to WGS. We identified 2719 single nucleotide variants (SNVs). The overall median (range) SNV difference between isolates was 173 (1-339). Intraclass median SNV differences ranged from 23 to 245. Two phylogenetic clusters were suggestive of interclass MRSA transmission. One of these clusters stemmed from 2 classes that were separated by a 13-month period but housed in the same barracks. Among trainees with recurrent MRSA SSTI, the intrahost median SNV difference was 7.5 (1-48). CONCLUSIONS: Application of WGS revealed intra- and interclass transmission of MRSA among military trainees. An interclass cluster between 2 noncontemporaneous classes suggests a long-term reservoir for MRSA in this setting.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/genetics , Military Personnel/statistics & numerical data , Soft Tissue Infections , Staphylococcal Skin Infections , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Case-Control Studies , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Genomics , Humans , Male , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/drug effects , Phylogeny , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors , Sequence Analysis, DNA , Soft Tissue Infections/epidemiology , Soft Tissue Infections/microbiology , Soft Tissue Infections/transmission , Staphylococcal Skin Infections/epidemiology , Staphylococcal Skin Infections/microbiology , Staphylococcal Skin Infections/transmission , Young Adult
15.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27296848

ABSTRACT

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Subject(s)
Immunization Schedule , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria/prevention & control , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Adolescent , Adult , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/immunology , Antibody Affinity , Female , Humans , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Light Chains/biosynthesis , Male , Middle Aged , Young Adult
17.
Malar J ; 13: 2, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24386891

ABSTRACT

BACKGROUND: Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. METHODS: In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. RESULTS: NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. CONCLUSIONS: The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.


Subject(s)
Aminoquinolines/metabolism , Antimalarials/metabolism , Cytochrome P-450 CYP2D6/metabolism , Malaria/drug therapy , Plasmodium berghei/drug effects , Succinates/metabolism , Animals , Cytochrome P-450 CYP2D6/genetics , Dose-Response Relationship, Drug , Malaria/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
18.
JAC Antimicrob Resist ; 6(3): dlae090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872715

ABSTRACT

Objectives: To better understand the source and potential transmission routes of antibiotic-resistant bacteria infecting injured service members in Ukraine. Methods: Phenotypic and genomic characterizations were performed on 11 Gram-negative pathogens cultured from war wounds at an intermediate evacuation hospital in Dnipro. Results: The analysis revealed both susceptible and extensively drug-resistant strains present in cultures, including high-risk global clones carrying carbapenemases. Conclusions: Globally distributed carbapenemase-producing lineages are being acquired early in the medical evacuation process.

19.
Mil Med ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38243767

ABSTRACT

INTRODUCTION: Military trainees are at increased risk for infectious disease outbreaks because of the unique circumstances of the training environment (e.g., close proximity areas and physiologic/psychologic stress). Standard medical countermeasures in military training settings include routine immunization (e.g., influenza and adenovirus) as well as chemoprophylaxis [e.g., benzathine penicillin G (Bicillin) for the prevention of group A streptococcal disease] for pathogens associated with outbreaks in these settings. In a population of U.S. Army Infantry trainees, we evaluated changes in the oral microbiome during a 14-week military training cycle. MATERIALS AND METHODS: Trainees were enrolled in an observational cohort study in 2015-2016. In 2015, Bicillin was administered to trainees to ameliorate the risk of group A Streptococcus outbreaks, whereas in 2016, trainees did not receive a Bicillin inoculation. Oropharyngeal swabs were collected from participants at days 0, 7, 14, 28, 56, and 90 of training. Swabs were collected, flash frozen, and stored. DNA was extracted from swabs, and amplicon sequencing of the 16s rRNA gene was performed. Microbiome dynamics were evaluated using the QIIME 2 workflow along with DADA2, SINA with SILVA, and an additional processing in R. RESULTS: We observed that microbiome samples from the baseline (day 0) visit were distinct from one another, whereas samples collected on day 14 exhibited significant microbiome convergence. Day 14 convergence was coincident with an increase in DNA sequences associated with Streptococcus, though there was not a significant difference between Streptococcus abundance over time between 2015 and 2016 (P = .07), suggesting that Bicillin prophylaxis did not significantly impact overall Streptococcus abundance. CONCLUSIONS: The temporary convergence of microbiomes is coincident with a rise in communicable infections in this population. The dynamic response of microbiomes during initial military training supports similar observations in the literature of transient convergence of the human microbiome under cohabitation in the time frame including in this experiment. This population and the associated longitudinal studies allow for controlled studies of human microbiome under diverse conditions.

20.
Microbiol Spectr ; 11(3): e0046223, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37140387

ABSTRACT

An outbreak involving an extensively antibiotic-resistant Acinetobacter baumannii strain in three military treatment facilities was identified. Fifty-nine isolates recovered from 30 patients over a 4-year period were found among a large collection of isolates using core genome multilocus sequence typing (MLST). They differed by only 0 to 18 single nucleotide polymorphisms (SNPs) and carried the same resistance determinants except that the aphA6 gene was missing in 25 isolates. They represent a novel sublineage of GC1 lineage 1 that likely originated in Afghanistan. IMPORTANCE A. baumannii is recognized as one of the most important nosocomial pathogens, and carbapenem-resistant strains pose a particularly difficult treatment challenge. Outbreaks linked to this pathogen are reported worldwide, particularly during periods of societal upheaval, such as natural disasters and conflicts. Understanding how this organism enters and establishes itself within the hospital environment is key to interrupting transmission, but few genomic studies have examined these transmissions over a prolonged period. Though historical, this report provides an in-depth analysis of nosocomial transmission of this organism across continents and within and between different hospitals.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Military Personnel , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Multilocus Sequence Typing , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Microbial Sensitivity Tests , Disease Outbreaks , Cross Infection/epidemiology , Cross Infection/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL