Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Metab Eng ; 76: 193-203, 2023 03.
Article in English | MEDLINE | ID: mdl-36796578

ABSTRACT

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional ß-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Mutagenesis , Fatty Acids
2.
Metab Eng ; 72: 297-310, 2022 07.
Article in English | MEDLINE | ID: mdl-35489688

ABSTRACT

Bacterial gene expression is orchestrated by numerous transcription factors (TFs). Elucidating how gene expression is regulated is fundamental to understanding bacterial physiology and engineering it for practical use. In this study, a machine-learning approach was applied to uncover the genome-scale transcriptional regulatory network (TRN) in Pseudomonas putida KT2440, an important organism for bioproduction. We performed independent component analysis of a compendium of 321 high-quality gene expression profiles, which were previously published or newly generated in this study. We identified 84 groups of independently modulated genes (iModulons) that explain 75.7% of the total variance in the compendium. With these iModulons, we (i) expand our understanding of the regulatory functions of 39 iModulon associated TFs (e.g., HexR, Zur) by systematic comparison with 1993 previously reported TF-gene interactions; (ii) outline transcriptional changes after the transition from the exponential growth to stationary phases; (iii) capture group of genes required for utilizing diverse carbon sources and increased stationary response with slower growth rates; (iv) unveil multiple evolutionary strategies of transcriptome reallocation to achieve fast growth rates; and (v) define an osmotic stimulon, which includes the Type VI secretion system, as coordination of multiple iModulon activity changes. Taken together, this study provides the first quantitative genome-scale TRN for P. putida KT2440 and a basis for a comprehensive understanding of its complex transcriptome changes in a variety of physiological states.


Subject(s)
Pseudomonas putida , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Machine Learning , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
3.
Metab Eng ; 59: 64-75, 2020 05.
Article in English | MEDLINE | ID: mdl-31931111

ABSTRACT

Pseudomonas putida KT2440 has received increasing attention as an important biocatalyst for the conversion of diverse carbon sources to multiple products, including the olefinic diacid, cis,cis-muconic acid (muconate). P. putida has been previously engineered to produce muconate from glucose; however, periplasmic oxidation of glucose causes substantial 2-ketogluconate accumulation, reducing product yield and selectivity. Deletion of the glucose dehydrogenase gene (gcd) prevents 2-ketogluconate accumulation, but dramatically slows growth and muconate production. In this work, we employed adaptive laboratory evolution to improve muconate production in strains incapable of producing 2-ketogluconate. Growth-based selection improved growth, but reduced muconate titer. A new muconate-responsive biosensor was therefore developed to enable muconate-based screening using fluorescence activated cell sorting. Sorted clones demonstrated both improved growth and muconate production. Mutations identified by whole genome resequencing of these isolates indicated that glucose metabolism may be dysregulated in strains lacking gcd. Using this information, we used targeted engineering to recapitulate improvements achieved by evolution. Deletion of the transcriptional repressor gene hexR improved strain growth and increased the muconate production rate, and the impact of this deletion was investigated using transcriptomics. The genes gntZ and gacS were also disrupted in several evolved clones, and deletion of these genes further improved strain growth and muconate production. Together, these targets provide a suite of modifications that improve glucose conversion to muconate by P. putida in the context of gcd deletion. Prior to this work, our engineered strain lacking gcd generated 7.0 g/L muconate at a productivity of 0.07 g/L/h and a 38% yield (mol/mol) in a fed-batch bioreactor. Here, the resulting strain with the deletion of hexR, gntZ, and gacS achieved 22.0 g/L at 0.21 g/L/h and a 35.6% yield (mol/mol) from glucose in similar conditions. These strategies enabled enhanced muconic acid production and may also improve production of other target molecules from glucose in P. putida.


Subject(s)
Glucose/metabolism , Metabolic Engineering , Pseudomonas putida , Sorbic Acid/analogs & derivatives , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Sorbic Acid/metabolism
5.
Metab Eng ; 38: 148-158, 2016 11.
Article in English | MEDLINE | ID: mdl-27421620

ABSTRACT

Branched-chain fatty acids (BCFAs) are key precursors of branched-chain fuels, which have cold-flow properties superior to straight chain fuels. BCFA production in Gram-negative bacterial hosts is inherently challenging because it competes directly with essential and efficient straight-chain fatty acid (SCFA) biosynthesis. Previously, Escherichia coli strains engineered for BCFA production also co-produced a large percentage of SCFA, complicating efficient isolation of BCFA. Here, we identified a key bottleneck in BCFA production: incomplete lipoylation of 2-oxoacid dehydrogenases. We engineered two protein lipoylation pathways that not only restored 2-oxoacid dehydrogenase lipoylation, but also increased BCFA production dramatically. E. coli expressing an optimized lipoylation pathway produced 276mg/L BCFA, comprising 85% of the total free fatty acids (FFAs). Furthermore, we fine-tuned BCFA branch positions, yielding strains specifically producing ante-iso or odd-chain iso BCFA as 77% of total FFA, separately. When coupled with an engineered branched-chain amino acid pathway to enrich the branched-chain α-ketoacid pool, BCFA can be produced from glucose at 181mg/L and 72% of total FFA. While E. coli can metabolize BCFAs, we demonstrated that they are not incorporated into the cell membrane, allowing our system to produce a high percentage of BCFA without affecting membrane fluidity. Overall, this work establishes a platform for high percentage BCFA production, providing the basis for efficient and specific production of a variety of branched-chain hydrocarbons in engineered bacterial hosts.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Fatty Acids/biosynthesis , Glucose/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/physiology , Oxidoreductases/genetics , Biosynthetic Pathways/physiology , Escherichia coli Proteins/genetics , Fatty Acids/genetics , Genetic Enhancement/methods , Lipogenesis/physiology , Oxidoreductases/metabolism
6.
Biotechnol Bioeng ; 112(8): 1613-22, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25788017

ABSTRACT

Branched-chain fatty acids (BCFAs) are important precursors for the production of advanced biofuels with improved cold-flow properties. Previous efforts in engineering type II fatty acid synthase (FAS) for BCFA production suffered from low titers and/or the co-production of a large amount of straight-chain fatty acids (SCFAs), making it nearly impossible for further conversion of BCFAs to branched biofuels. Synthesis of both SCFAs and BCFAs requires FabH, the only ß-ketoacyl-(acyl-carrier-protein) synthase in Escherichia coli that catalyzes the initial condensation reaction between malonyl-ACP and a short-chain acyl-CoA. In this study, we demonstrated that replacement of the acetyl-CoA-specific E. coli FabH with a branched-chain-acyl-CoA-specific FabH directed the flux to the synthesis of BCFAs, resulting in a significant enhancement in BCFA titer compared to a strain containing both acetyl-CoA- and branched-chain-acyl-CoA-specific FabHs. We further demonstrated that the composition of BCFAs can be tuned by engineering the upstream pathway to control the supply of different branched-chain acyl-CoAs, leading to the production either even-chain-iso-, odd-chain-iso-, or odd-chain-anteiso-BCFAs separately. Overall, the top-performing strain from this study produced BCFAs at 126 mg/L, comprising 52% of the total free fatty acids.


Subject(s)
Acetyltransferases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Fatty Acids/biosynthesis , Metabolic Engineering/methods , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Acetyltransferases/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fatty Acid Synthase, Type II/genetics , Fatty Acid Synthase, Type II/metabolism , Metabolic Networks and Pathways/genetics
7.
Front Bioeng Biotechnol ; 8: 603488, 2020.
Article in English | MEDLINE | ID: mdl-33425868

ABSTRACT

Targeted proteomics is a mass spectrometry-based protein quantification technique with high sensitivity, accuracy, and reproducibility. As a key component in the multi-omics toolbox of systems biology, targeted liquid chromatography-selected reaction monitoring (LC-SRM) measurements are critical for enzyme and pathway identification and design in metabolic engineering. To fulfill the increasing need for analyzing large sample sets with faster turnaround time in systems biology, high-throughput LC-SRM is greatly needed. Even though nanoflow LC-SRM has better sensitivity, it lacks the speed offered by microflow LC-SRM. Recent advancements in mass spectrometry instrumentation significantly enhance the scan speed and sensitivity of LC-SRM, thereby creating opportunities for applying the high speed of microflow LC-SRM without losing peptide multiplexing power or sacrificing sensitivity. Here, we studied the performance of microflow LC-SRM relative to nanoflow LC-SRM by monitoring 339 peptides representing 132 enzymes in Pseudomonas putida KT2440 grown on various carbon sources. The results from the two LC-SRM platforms are highly correlated. In addition, the response curve study of 248 peptides demonstrates that microflow LC-SRM has comparable sensitivity for the majority of detected peptides and better mass spectrometry signal and chromatography stability than nanoflow LC-SRM.

8.
J Phys Chem B ; 122(45): 10349-10361, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30352510

ABSTRACT

Terpenoids constitute a class of compounds with remarkable potential for pharmaceutical, fragrance, specialty chemical, and biofuel applications. However, their industrial production is limited by their rarity within their native plant hosts, creating considerable interest in microbial hosts capable of manufacturing terpenoids. To reduce production costs, nondestructive product recovery from these microbial hosts is preferred, and is achievable using a hydrophobic organic overlay. Our prior research has indicated that oxidized fatty acyl products may permeate faster through host membranes, increasing overall biorefinery productivity. To test this hypothesis for terpenoids, we computed membrane permeabilities of conventional terpenoid target products (e.g., limonene, bisabolene, farnesene) and related oxidized compounds through molecular dynamics simulations. These simulations indicate that terpenoid product permeabilities from cytosol to overlay are oxidation independent, as increases in membrane extraction efficiency due to product oxidation are proportionally offset by decreases in the membrane crossing rate if the membrane and organic phase are in close contact. However, if aqueous extraction is required, oxidation will accelerate the slow product extraction from the membrane. Experimental toxicity assays performed indicated that most terpenoids tested were tolerated by microbial hosts, although exposure to oxidized terpenes often retarded microbial growth compared with conventional terpenes. Thus, terpenoid oxidation is not expected to significantly increase or decrease the extraction productivity in an industrial setting where cells are in close contact, unlike the previously studied fatty acyl products.


Subject(s)
Lipid Bilayers/chemistry , Terpenes/chemistry , Alkanes/chemistry , Cell Membrane Permeability , Chemical Fractionation , Diffusion , Escherichia coli/drug effects , Hydroxylation , Molecular Dynamics Simulation , Oxidation-Reduction , Pseudomonas putida/drug effects , Saccharomyces cerevisiae/drug effects , Terpenes/toxicity
9.
Biotechnol Biofuels ; 10: 244, 2017.
Article in English | MEDLINE | ID: mdl-29090017

ABSTRACT

The intrinsic structural properties of branched long-chain fatty alcohols (BLFLs) in the range of C12 to C18 make them more suitable as diesel fuel replacements and for other industrial applications than their straight-chain counterparts. While microbial production of straight long-chain fatty alcohols has been achieved, biosynthesis of BLFLs has never been reported. In this work, we engineered four different biosynthetic pathways in Escherichia coli to produce BLFLs. We then employed a modular engineering approach to optimize the supply of α-keto acid precursors and produced either odd-chain or even-chain BLFLs with high selectivity, reaching 70 and 75% of total fatty alcohols, respectively. The acyl-ACP and alcohol-producing modules were also extensively optimized to balance enzyme expression level and ratio, resulting in a 6.5-fold improvement in BLFL titers. The best performing strain overexpressed 14 genes from 6 engineered operons and produced 350 mg/L of BLFLs in fed-batch fermenter. The modular engineering strategy successfully facilitated microbial production of BLFLs and allowed us to quickly optimize new BLFL pathway with high titers and product specificity. More generally, this work provides pathways and knowledge for the production of BLFLs and BLFL-related, industry-relevant chemicals in high titers and yields.

SELECTION OF CITATIONS
SEARCH DETAIL