Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Angew Chem Int Ed Engl ; 62(23): e202301611, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36973914

ABSTRACT

Low-valent metal-organic frameworks (LVMOFs) and related materials have gained interest due to their potential applications in heterogeneous catalysis. However, of the few LVMOFs that have been reported, none have shown catalytic activity. Herein, a low-valent metal-organic material constructed from phosphine linkers and IrI nodes is reported. This material is effectively a crystalline, insoluble analogue of Vaska's complex. As such, the material reversibly binds O2 and catalyzes the reductive formation of enamines from amides.

2.
Langmuir ; 38(4): 1589-1599, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35029998

ABSTRACT

Postsynthetic exchange (PSE) is a method that is widely used to change the composition of metal-organic frameworks (MOFs) by replacing connecting linkers or metal nodes after the framework has been synthesized. However, few techniques can probe the nature and distribution of exchanged species following PSE. Herein, we show that X-ray photoelectron spectroscopy can be used to compare the relative concentrations of exchanged ligands at the surface and interior regions of MOF particles. Specifically, PSE of iodobenzene dicarboxylate ligands results in a gradient distribution from surface to bulk in UiO-66 nanoparticles that depends on PSE time. X-ray photoelectron spectroscopy also reveals differences between the surface chemistry of the PSE product and that of the direct synthesis product.

3.
Langmuir ; 32(12): 2947-54, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26950797

ABSTRACT

The adsorption of methanol by a zeolitic imidazolate framework-8 (ZIF-8) nanoparticle thin film was studied in situ using temperature-programmed desorption and X-ray photoelectron spectroscopy under low-temperature, low-pressure conditions. Partial pore penetration was observed at 90 K, but upon increasing the exposure temperature of the film to 130 K pore penetration was significantly enhanced. Although many studies exist involving bulk powders, this is the first work to our knowledge that demonstrates the ability to control and monitor the entry of a molecule into a metal organic framework (MOF) film in situ using temperature. In this case, nanoparticle films of ZIF-8 were prepared and studied in ultrahigh vacuum. The ability to control and monitor surface adsorption versus pore adsorption in situ is key to future fundamental study of MOFs, for example, in the identification of active sites in reaction mechanisms.

4.
Anal Chem ; 87(5): 2779-87, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25627574

ABSTRACT

A small, portable gas chromatograph (GC) was assembled for the trace detection of controlled substances using a novel quartz crystal microbalance sensor (QCM). The QCM crystal surface was modified with a variety of sorption materials to increase adsorption thereby amplifying mass detection. Single polymer thin film coatings increased the QCM response by 1-2 orders of magnitude, while operating at over 100 °C. Adding a layer of carbonaceous nanomaterial (graphene or carbon nanotubes) above such a film dramatically increased sensitivity by up to 3 orders of magnitude compared to uncoated crystals. Separation and detection of submicrogram quantities of controlled substances was carried out within minutes by employing a GC column and detector temperature ramp up to 220 °C. An additional 10-fold enhancement in sensitivity was achieved by mechanical abrasion of the sample swabs used in the sample introduction process. This study demonstrated a novel use of a polymer composite modified QCM as a chemical sensor at high temperatures.


Subject(s)
Biosensing Techniques/methods , Chromatography, Gas/methods , Controlled Substances/analysis , Nanotubes, Carbon/chemistry , Polymers/chemistry , Quartz Crystal Microbalance Techniques/methods , Hot Temperature
5.
Langmuir ; 28(27): 10209-16, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22694143

ABSTRACT

The interaction of two sets of structurally related molecules, thiophenol/thioanisole, and thiophene/tetrahydrothiophene, with vacuum-annealed and ion-bombarded TiO(2)(110) surfaces has been studied using a combination of temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS). All thioethers studied were observed to adsorb and desorb from both surfaces without producing reaction products, while thiophenol, the only species studied containing a S-H bond, reacted with both surfaces. Approximately 25% of surface bound thiophenol decomposed over the vacuum-annealed surface. On the bombarded surface, thiophenol both decomposed into surface-bound C(x)H(y)/S fragments, and reacted to form benzene, which desorbed from the surface at 400 K. We propose that phenylthiolate formation on the bombarded surface leads to the observed production of benzene. These results highlight the importance of defects in the reactivity of titania, and lay the foundation for the study of larger, refractory sulfur compounds present in fuel.

6.
Langmuir ; 26(4): 2445-51, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20070108

ABSTRACT

The adsorption of NO(2) on the rutile TiO(2)(110) surface has been studied at room temperature in the pressure range from approximately 10(-8) torr to 200 mtorr using ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Atomic nitrogen, chemisorbed NO(2), and NO(3) were formed, each of which saturates at pressures below approximately 10(-6) torr NO(2). Atomic nitrogen originates from decomposition of the NO(x) species. For pressures of up to 10(-3) torr, no significant change in the NO(x) surface species occurred, suggesting that environmentally relevant conditions with typical NO(2) partial pressures in the 1-100 ppb range can be modeled by ultrahigh vacuum (UHV) studies. The chemisorbed surface species can be removed by in situ annealing in UHV: all of the NO(x) species disappear around 400 K, whereas the N 1s signal associated with atomic nitrogen diminishes around 580 K. At higher pressures of NO(2) (p(NO(2)) > or = 10(-6) torr), physisorbed NO(2) and adsorbed water, which was likely due to displacement from the chamber walls, appeared. The water coverage grew significantly above approximately 10(-3) torr. Concurrently with co-condensation of water and NO(2), the population of NO(3) species grew strongly. From this, we conclude that the presence of NO(2) and water leads to the formation of multilayers of nitric acid. In contrast, pure water exposure after saturation of the surface with 200 mtorr NO(2) did not lead to a growth of the NO(3) signals, implying that HNO(3) formation requires weakly adsorbed NO(2) species. These findings have important implications for environmental processes, since they confirm that oxides may facilitate nitric acid formation under ambient humidity conditions encountered in the atmosphere.

7.
J Am Chem Soc ; 131(41): 15026-31, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19778050

ABSTRACT

Selective reductive coupling of benzaldehyde to stilbene is driven by subsurface Ti interstitials on vacuum-reduced TiO(2)(110). A combination of temperature-programmed reaction spectroscopy and scanning tunneling microscopy (STM) provides chemical and structural information which together reveal the dependence of this surface reaction on bulk titanium interstitials. Benzaldehyde reductively couples to stilbene with 100% selectivity and conversions of up to 28% of the adsorbed monolayer in temperature programmed reaction experiments. The activity for coupling was sustained for at least 20 reaction cycles, which indicates that there is a reservoir of Ti interstitials available for reaction and that surface O vacancies alone do not account for the coupling. Reactivity was unchanged after predosing with water so as to fill surface oxygen vacancies, which are not solely responsible for the coupling reaction. The reaction is nearly quenched if O(2) is adsorbed first-a procedure that both fills defects and reacts with Ti interstitials as they migrate to the surface. New titania islands form after reductive coupling of benzaldehyde, based on scanning tunneling microscope images obtained after exposure of TiO(2)(110) to benzaldehyde followed by annealing, providing direct evidence for migration of subsurface Ti interstitials to create reactive sites. The reliance of the benzaldehyde coupling on subsurface defects, and not surface vacancies, over reduced TiO(2)(110), may be general for other reductive processes induced by reducible oxides. The possible role of subsurface, reduced Ti interstitials has broad significance in modeling oxide-based catalysis with reduced crystals.

8.
J Phys Chem B ; 110(2): 663-6, 2006 Jan 19.
Article in English | MEDLINE | ID: mdl-16471583

ABSTRACT

We have deposited Au atoms on the surface of titania without sintering or surface damage. Mass-selected Au+ atoms were deposited from the gas phase at room temperature with kinetic energies from <3 to 190+/-3.5 eV. Scanning tunneling microscopy reveals island formation following deposition at <3 eV, while mainly atomic features are observed for energies between approximately 35 and approximately 190 eV. A mixture of islands and atomic features is observed at a landing energy of 20+/-3.5 eV, suggesting a critical energy above which pinning occurs. Cluster size is also probed as a function of coverage in the deposition of Au+ with 100 eV of energy, revealing that sintering begins at a coverage of only 0.06 ML. These observations suggest a mechanism in which high-energy collision leads to the annealing of any impact-created surface damage and the pinning of Au atoms to the surface. We provide a new method of preparing isolated Au atoms on an oxide surface, which can serve as a platform for catalytic studies.

9.
ACS Appl Mater Interfaces ; 6(12): 9093-9, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24848580

ABSTRACT

Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC. We report adsorption equilibrium constants consistent with prior optical measurements of N3 adsorption. Dye binding and surface integrity were also verified by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). We further study desorption of the dye from the native oxide layer on the QCM sensors using tetrabutylammonium hydroxide (TBAOH), a commonly used industrial desorbant. We find that using TBAOH as a desorbant does not fully regenerate the surface, though little ruthenium or nitrogen is observed by XPS after desorption, suggesting that carboxyl moieties of N3 remain bound. We demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption and desorption and begin to investigate the mechanism of dye desorption in DSSCs, a system that requires further study.

10.
ACS Nano ; 5(2): 834-43, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21229961

ABSTRACT

We report the first visualization of a reactive intermediate formed from coupling two molecules on a surface-a diolate formed from benzaldehyde coupling on TiO(2)(110). The diolate, imaged using scanning tunneling microscopy (STM), is reduced to gaseous stilbene upon heating to ∼400 K, leaving behind two oxygen atoms that react with reduced Ti interstitials that migrate to the surface, contrary to the popular expectation that strong bonds in oxygenated molecules react only with oxygen vacancies at the surface. Our work further provides both experimental and theoretical evidence that Ti interstitials drive the formation of diolate intermediates. Initially mobile monomers migrate together to form paired features, identified as diolates that bond over two adjacent five-coordiante Ti atoms on the surface. Our work is of broad importance because it demonstrates the possibility of imaging the distribution and bonding configurations of reactant species on a molecular scale, which is a critical part of understanding surface reactions and the development of surface morphology during the course of reaction.


Subject(s)
Benzaldehydes/chemistry , Microscopy, Scanning Tunneling , Titanium/chemistry , Adsorption , Feasibility Studies , Models, Molecular , Molecular Conformation , Nanostructures/chemistry , Oxidation-Reduction , Surface Properties , Temperature
11.
J Am Chem Soc ; 127(39): 13516-8, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16190713

ABSTRACT

Experiments in which mass-selected gold clusters were deposited on a surface have found that the catalytic properties depend strongly on cluster size. However, these experiments have not established definitively that the clusters maintain their size after deposition. We report here work in which we deposit low kinetic energy, mass-selected Aun+ (n = 1-8) clusters on a rutile TiO2(1 x 1) surface and use ultrahigh vacuum scanning tunneling microscopy (UHV-STM) to determine their size and shape.

12.
J Chem Phys ; 123(20): 204701, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16351287

ABSTRACT

We present the first scanning tunneling microscopy (STM) study of the deposition of mass-selected silver clusters (Ag(n),n=1, 2, 3) on a rutile TiO(2)(110)-1x1 surface at room temperature under hard-landing conditions. Under hard-landing conditions, only small features are observed on the surface in all cases without sintering or surface damage. This suggests that the high impact energy of the clusters mainly dissipates as thermal energy in the substrate, resulting in the recovery of any initial impact-induced surface damage and the formation of bound clusters on the surface near the impact point. STM images indicate that Ag(1) binds on the bridging oxygen rows twice as often as on the Ti rows. Density-functional Theory (DFT) calculations are consistent with Ag(1) binding at either bridging oxygen vacancies or with two adjacent bridging oxygen atoms in the same bridging oxygen row. STM images of Ag(2) and Ag(3) depositions indicate almost exclusive binding centered on the Ti-atom rows. DFT calculations suggest that the Ag(2) and Ag(3) clusters are bound between two bridging oxygen rows, which is consistent with the STM observations.

13.
J Chem Phys ; 122(8): 81102, 2005 Feb 22.
Article in English | MEDLINE | ID: mdl-15836012

ABSTRACT

Mass-selected Ag(n) (+) (n=1,2,3) clusters with impact energy less than 2 eV per atom were deposited from the gas phase onto rutile titania (110)-(1x1) single crystal surfaces at room temperature and imaged using ultra-high vacuum scanning tunneling microscopy. Upon reaching the surface, Ag monomers sintered to form three-dimensional islands of approximately 50 atoms in size, with an average measured height of 7.5 A and diameter of 42 A. This suggests that the monomers are highly mobile on the titania surface at room temperature. Dimers also sintered to form large clusters upon deposition, approximately 30 atoms in size, with an average height of 6.2 A and diameter of 33 A. Clusters formed from monomer deposition appeared approximately three times more frequently at step edges than clusters formed from dimer deposition, indicating that the surface mobility of deposited monomers is higher than that of deposited dimers. In sharp contrast to the deposition of monomers and dimers, the deposition of trimers resulted in a high density of very small clusters on the order of a few atoms in size, indicative of intact trimers on the surface, implying that deposited trimers have very limited mobility on the surface at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL