Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Environ Int ; 175: 107963, 2023 05.
Article in English | MEDLINE | ID: mdl-37192573

ABSTRACT

Arsenic (As)-contaminated soil inevitably exists in nature and has become a global challenge for a sustainable future. Current processes for As capture using natural and structurally engineered nanomaterials are neither scientifically nor economically viable. Here, we established a feasible strategy to enhance As-capture efficiency and ecosystem health by structurally reorganizing iron oxyhydroxide, a natural As stabilizer. We propose crystallization to reorganize FeOOH-acetate nanoplatelets (r-FAN), which is universal for either scalable chemical synthesis or reproduction from natural iron oxyhydroxide phases. The r-FAN with wide interlayer spacing immobilizes As species through a synergistic mechanism of electrostatic intercalation and surface chemisorption. The r-FAN rehabilitates the ecological fitness of As-contaminated artificial and mine soils, as manifested by the integrated bioassay results of collembolan and plants. Our findings will serve as a cornerstone for crystallization-based material engineering for sustainable environmental applications and for understanding the interactions between soil, nanoparticles, and contaminants.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/analysis , Ecosystem , Crystallization , Soil Pollutants/analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL